NATIONAL CERVICAL SCREENING PROGRAM:

Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
MANDATORIES

© Cancer Council Australia

ISBN: 978-1-925136-17-3
Date PDF published: March 2017

This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from Cancer Council Australia. Requests and enquiries concerning reproduction and rights should be addressed to the Copyright Officer: Cancer Council Australia GPO Box 4708 Sydney NSW 2001 Australia www.cancer.org.au info@cancer.org.au

Disclaimer
This document is a general guide to appropriate practice, to be followed subject to the clinician’s judgment and the patient’s preference in each individual case. The guidelines are designed to provide information to assist in decision-making. The guidelines are not meant to be prescriptive.

Conflict of interest
The development of these clinical practice guidelines has been undertaken by a non-remunerated Cervical Cancer Screening Guidelines Working Party. Observers/non-voting members are also outlined in this document. Disclosure of their interests can be found online at: http://wiki.cancer.org.au/australia/Guidelines:Cervical_cancer/Screening/Conflict_of_interest_register (Appendix G)

Periodic updates
The incoming literature updates will continue to be monitored for each review question. If there is strong evidence emerging in a specific area, even if not considered previously, the Cancer Council Australia Cervical Cancer Screening Guidelines Working Party will be reconvened to assess if this evidence warrants further systematic review(s) and updating of recommendations. It is recommended that these guidelines should be updated within 5 years.

Suggested citation

These guidelines and associated documentation (i.e. systematic review, literature search and modelling reports) can be accessed and downloaded at: http://wiki.cancer.org.au/australia/Guidelines:Cervical_cancer/Screening

Acknowledgments
This PDF has been designed by Grave Design PTY LTD.
Contents

Foreword
- 5

Introduction
- 7

Summary of Recommendations
- 10

1. Cervical Cancer in Australia
- 40

2. The Rationale for Primary HPV Screening
- 55

3. Terminology
- 64
 - HPV testing terminology
 - Cytology and AMBS 2004 terminology for reporting cervical cytology
 - Preparation of cervical screening reports
 - Colposcopy
 - Histopathology
 - Supplement. Sample reports
- 66

4. Unsatisfactory Cervical Screening Results
- 82

5. Benefits, Harms and Cost-Effectiveness of Cervical Screening
- 85

6. Management of Oncogenic HPV Test Results
- 92
 - Medical Services Advisory Committee recommendations for HPV testing
 - Oncogenic HPV types not detected
 - Oncogenic HPV types 16 and/or 18
 - HPV oncogenic types not 16/18
 - Self-collected vaginal samples
 - Women undergoing exit testing
 - Screening in women older than 75
 - Discussion
- 93

7. Colposcopy
- 111
 - Colposcopy terminology
 - Principles of practice
 - History, examination and investigation
 - Treatment
 - Colposcopy data for the National Cancer Screening Register
 - Quality improvement in colposcopy
 - Supplement. Colposcopy information for discussion with patient
 - Supplement. Colposcopy technologies and documentation
- 97
TABLE OF CONTENTS

8. **MANAGEMENT OF DISCORDANT COLPOSCOPIC IMPRESSION, HISTOPATHOLOGY AND REFERRAL LBC PREDICTION**
 Normal colposcopic findings following LBC prediction of LSIL or HSIL
 Type 3 TZ (unsatisfactory) colposcopy following LBC prediction of LSIL or HSIL
 Discussion
 Page 134

9. **MANAGEMENT OF HISTOLOGICALLY CONFIRMED LOW-GRADE SQUAMOUS ABNORMALITIES**
 Diagnosis of HSIL
 Treatment of HSIL
 Test of Cure after treatment for HSIL (CIN2/3)
 Discussion
 Page 149

10. **MANAGEMENT OF HISTOLOGICALLY CONFIRMED HIGH-GRADE SQUAMOUS ABNORMALITIES**
 Investigation of cytological glandular abnormalities
 Follow-up after excisional treatment for AIS
 Discussion
 Page 155

11. **MANAGEMENT OF GLANDULAR ABNORMALITIES**
 Investigation of cytological glandular abnormalities
 Follow-up after excisional treatment for AIS
 Discussion
 Page 165

12. **SCREENING IN ABORIGINAL AND TORRES STRAIT ISLANDER WOMEN**
 Page 181

13. **SCREENING AFTER TOTAL HYSTERECTOMY**
 Page 186

14. **SCREENING IN PREGNANCY**
 Page 193

15. **SCREENING IN WOMEN WHO HAVE EXPERIENCED EARLY SEXUAL ACTIVITY OR HAVE BEEN VICTIMS OF SEXUAL ABUSE**
 Page 199

16. **SCREENING IN IMMUNE-DEFICIENT WOMEN**
 Page 204

17. **SCREENING IN DES-EXPOSED WOMEN**
 Page 213

18. **INVESTIGATION OF ABNORMAL VAGINAL BLEEDING**
 Page 217

19. **PSYCHOSOCIAL CARE**
 Page 223

20. **TRANSITION TO THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM**
 Page 228

APPENDICES

- **Appendix A.** Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations
 Page 231

- **Appendix B.** Guideline development process
 Page 240

- **Appendix C.** Clinical question list
 Page 252

- **Appendix D.** Technical report
 Page 262

- **Appendix E.** Working party members and contributions
 Page 266

- **Appendix F.** Project team contributors
 Page 269

- **Appendix G.** Conflict of interest register
 Page 272

- **Appendix H.** Safety monitoring of the renewed cervical screening program
 Page 274

- **Appendix I.** Glossary of terms and abbreviations
 Page 276

Please see the Australian Department of Health Cancer Screening website (www.cancerscreening.gov.au) for information about the National Cervical Screening Program (NCSP) and policies on transitioning women to the renewed NCSP.
FOREWORD

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
Professor Ian Frazer FRS, FAA, FTSE, FAHMS FRCP (Ed) FRACP FRCOG FRACGP MB ChB (Edin) MD (Melb) DSc (Edin) – Author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
The success of the Australian program is demonstrated by annual incidence and mortality rates for cervical cancer that are now amongst the lowest in the world.

Although the National Cervical Screening Program has been very successful, we have some challenges. The significant false-negative rate associated with Pap tests mandates frequent screening to minimise failure to detect disease. However, a newer and more sensitive approach to cervical screening has now been established, which involves testing for the presence of the causal agent for cervical cancer, human papillomavirus (HPV).

In 1984, Professor Harald zur Hausen demonstrated that cervical cancer is due to persisting infection of the cervix with HPV. The knowledge that HPV causes cervical cancer has been further developed through major international epidemiological studies. It is now recognised that HPV comes in many types; some, designated as ‘high-risk’ or oncogenic types, are associated with a risk of developing cervical cancer in the future if infection persists. The worldwide evidence has also shown that the absence of cervical oncogenic HPV infection is associated with an exceedingly low risk for development of cervical cancer in the next 5 years. The development of automated laboratory tests that enable detection of oncogenic HPV infection in cervical samples thus facilitates the widespread introduction of primary HPV screening. This heralds a new era of more sensitive testing of cervical samples to assess the future risk of cervical cancer.

The discovery of HPV’s role in causing cancer has also led to the development a vaccine to prevent cervical cancer. HPV vaccination was introduced into Australia in 2007 and young vaccinated women have already shown a falling rate of cervical abnormalities. These changes make Pap smear-based screening less efficient and the lower incidence of detected cervical abnormalities makes quality control more difficult.

Driven by all these developments, the National Cervical Screening Program has undergone a process of ‘renewal’ over the last 5 years, and this has resulted in an evidence-based decision to change from 2-yearly Pap smear tests to 5-yearly primary HPV testing. I am confident that the new 5-yearly HPV test based screening policy will provide even greater protection against cervical cancer than the previous program. The renewed program will protect up to 30% more women from cervical cancer, even whilst providing for a later starting age to commence screening and fewer screening tests over a woman’s lifetime. HPV-based cervical screening will now provide greater reassurance that all is well, without the need for further investigation in women without detected HPV infection.

This is great news for Australian women, and a testimony to the power of medical research to deliver practical outcomes for Australia. These new guidelines were developed by a team of expert clinicians and scientists. They support the new HPV-based National Cervical Screening Program by providing recommendations for the management of screen-detected abnormalities, symptoms and screening in special circumstances. I commend these guidelines to you and thank, on behalf of all Australians, the team that has evaluated the evidence and put together the recommendations for the benefit of all Australian women.

Professor Ian Frazer AC
The University of Queensland
President, Australian Academy of Health and Medical Sciences
FRS, FAA, FTSE, FAHMS
FRCP (Ed) FRACP FRCPA FRCOG FRACGP
MB ChB (Edin) MD (Melb) DSc (Edin)
INTRODUCTION

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Ian Hammond – Author
A/Professor Marion Saville – Author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
The management of screen-detected cervical abnormalities in asymptomatic women, and the care of women presenting with symptoms that may be due to cervical cancer or its precursors, involve health professionals across a broad spectrum of disciplines. These guidelines have been developed to assist women and health professionals to achieve the best outcomes.

The target audience for these guidelines includes all health professionals involved in cervical screening and the clinical care of women presenting with symptoms. It may also be of interest to policy makers and researchers.

In October 2011, the Australian Department of Health announced the renewal of the National Cervical Screening Program (NCSP). In April 2014, following a robust and transparent process involving a commissioned evidence review and health outcome and economic modelling, the Australian Medical Services Advisory Committee (MSAC) made several recommendations for the renewed NCSP. These included 5 yearly primary human papillomavirus (HPV) testing with partial genotyping and liquid-based cytology (LBC) triage, self-collection of an HPV sample for under- or never-screened women, and invitations and reminders to be sent to women aged 25–69 years, with exit testing from age 70–74 years.

In December 2017, the NCSP will change from 2 yearly cervical cytology testing to 5 yearly HPV testing for women aged 25–74 years. An HPV test every 5 years is more effective, just as safe, and is expected to result in a significant reduction (24%-36%) in incidence and mortality from cervical cancer in Australian women, compared with the program it replaces, which is based on 2 yearly Pap smears.

In 2005, the evidence based NHMRC endorsed guidelines Screening to Prevent Cervical Cancer: Guidelines for the Management of Women with Screen Detected Abnormalities were published and were introduced into practice in 2006. These guidelines were accepted by health professionals as a useful guide to the management of women with cervical abnormalities detected by cervical cytology. With the change to primary HPV testing, it is necessary and timely to review the 2005 guidelines and to consider recent evidence to formulate guidelines that are relevant to primary HPV testing and triage using LBC.

Following the MSAC recommendations and their acceptance by the Australian Government, the Department of Health requested that the 2005 guidelines be reviewed and updated to assist the implementation of the renewed NCSP. Cancer Council Australia was commissioned and funded by the Department of Health Australia to develop these guidelines with the assistance of an expert clinical management guidelines working party (see Working party members and contributors) and technical support from Professor Karen Canfell and her Cancer Screening Group at Cancer Council NSW.

These guidelines have been developed and published by Cancer Council Australia in accordance with NHMRC recommended processes (see Guideline development process). The web-based wiki platform allows for feedback and easy, regular updating in the light of emerging evidence.

These new guidelines offer guidance to health professionals and women as to best practice in the clinical management of women with positive oncogenic HPV test results and abnormalities detected on subsequent LBC. These guidelines address the current epidemiology of cervical cancer in Australia, the benefits and harms of cervical screening, the natural history of cervical HPV infection, the terminology for HPV testing, LBC, cervical histopathology and colposcopy, management of older women and those undergoing exit testing, management of women with positive oncogenic HPV test results, colposcopy, management of histologically confirmed squamous and glandular abnormalities, screening in specific populations, screening for women who are transitioning from the old into the new program, psychosocial issues and economic issues.
For the first time, guidance on the management of symptomatic women has been included, with a particular focus on those with signs or symptoms suggestive of cervical cancer, such as postcoital, intermenstrual and postmenopausal bleeding. These guidelines do not address issues related to the quality control aspects of the cervical screening test or detailed information about the treatment of invasive cervical cancer.

There are specific recommendations regarding the adoption of a new system for reporting cervical histopathology based on the Lower Anogenital Squamous Terminology (LAST) Standardization Project and new terminology recommended by the International Federation for Colposcopy and Cervical Pathology for use in reporting colposcopic findings and treatment.

The development of these guidelines has involved widespread consultation with relevant professional bodies and a wide range of clinicians and consumers. These guidelines have been reviewed and endorsed by The Royal Australian College of General Practitioners (RACGP), The Royal College of Pathologists of Australasia (RCPA), The Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG), The Australian Society for Colposcopy and Cervical Pathology (ASCCP) and The Australian Society of Gynaecologic Oncologists (ASGO).

Clinicians must, of course, make individual decisions in consultation with their patients, based on individual clinical circumstances. However, it is anticipated that, in most circumstances, women with screen-detected abnormalities would be managed according to these guidelines. It is important that the NCSP monitors compliance with these guidelines using the NCSP Quality Framework developed by the Quality and Safety Monitoring Committee.

These guidelines are a distillation of the latest research and data, brought together by some of the leading experts in this field. We commend the guidelines to you in the belief that they will result in further significant improvements in the care and treatment of Australian women.

Professor Ian Hammond
Chair, Cancer Council Australia Cervical Cancer Screening Guidelines Working Party,
Clinical Professor
School of Women’s and Infant’s Health
University of Western Australia

Associate Professor Marion Saville
Deputy Chair, Cancer Council Australia Cervical Cancer Screening Guidelines Working Party
Cytopathologist and Executive Director,
Victorian Cytology Services Ltd. Melbourne, Victoria
Department of Obstetrics and Gynaecology,
University of Melbourne

References
SUMMARY OF RECOMMENDATIONS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Recommendations

This is a summary of the recommendations in these guidelines, numbered according to chapter to which they relate. Please note that some chapters do not have associated recommendations.

KEY TO TYPES OF RECOMMENDATIONS IN THESE GUIDELINES

- **EVIDENCE-BASED RECOMMENDATION**
 Recommendations formulated by the guideline development group based on a systematic review of quality evidence and graded according to an NHMRC-approved method.

- **MSAC EVIDENCE-BASED RECOMMENDATION**
 A recommendation formulated after a systematic review of the evidence, indicating supporting references, from the 2014 Medical Services Advisory Committee review.

- **NCSP RECOMMENDATION**
 Recommendations based on National Cervical Screening Program policy.

- **CONSENSUS-BASED RECOMMENDATION**
 Recommendations formulated by the guideline development group, using a consensus-reaching process, when a systematic review was undertaken and insufficient quality evidence was found on which to base a recommendation.

 * Consensus-based recommendation based on 2005 NHMRC-approved guidelines formulated by the guideline development group, using a consensus-reaching process.

- **PRACTICE POINT**
 A recommendation on a subject that is outside the scope of the search strategy for the systematic review, based on expert opinion and formulated by a consensus process.
4. UNSATISFACTORY CERVICAL SCREENING RESULTS

PRACTICE POINT

REC4.1: Attempt adequate repeat preparations for an unsatisfactory LBC test
In the case of unsatisfactory LBC, laboratories should ensure that adequate repeat preparations are attempted, after dealing with potentially remediable technical problems.

PRACTICE POINT

REC4.2: Report cellular abnormality for LBC specimens with abnormal cells
Any LBC specimen with abnormal cells should not be reported as ‘Unsatisfactory’. The identified cellular abnormality should be reported.

PRACTICE POINT

REC4.3: Recall women in 6–12 weeks if they have an unsatisfactory screening report
A woman with an unsatisfactory screening report should have a repeat sample collected in 6–12 weeks. If the reason for the unsatisfactory sample has been identified then this problem should be corrected if possible before the repeat sample is collected.

6. MANAGEMENT OF HPV TEST RESULTS

Oncogenic HPV types not detected

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.1: Oncogenic HPV types not detected at routine screening
Women who have a screening HPV test in which oncogenic HPV types are not detected should rescreen in 5 years.

Oncogenic HPV types 16 and/or 18

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.2: Women with a positive HPV (16/18) test result
Women with a positive oncogenic HPV (16/18) test result should be referred directly for colposcopic assessment, which will be informed by the result of reflex LBC.

CONSENSUS-BASED RECOMMENDATION

REC6.3: Referral to gynaecological oncologist for LBC prediction of invasive disease
Women who have a positive oncogenic HPV (16/18) test result with a LBC report of invasive cancer (squamous, glandular or other) should be referred to a gynaecological oncologist or gynaecological cancer centre for urgent evaluation, ideally within 2 weeks.
PRACTICE POINT

REC6.4: Referral of women with a positive HPV (16/18) test result and unsatisfactory LBC

When reflex LBC is unsatisfactory, but the woman requires colposcopic referral regardless of the LBC result (i.e. when HPV 16/18 is detected), then the screening episode should be classified as ‘Higher risk for cervical cancer or precursors’. A cervical sample for LBC should be collected at the time of colposcopy (see Chapter 4. Unsatisfactory cervical screening results).

PRACTICE POINT

REC6.5: Referral of women with a positive HPV (16/18) test result and reflex LBC pHSIL/HSIL

Women with a positive oncogenic HPV (16/18) test result and reflex LBC prediction of pHSIL/HSIL should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.

Oncogenic HPV types not 16 and/or 18

EVIDENCE-BASED RECOMMENDATION

REC6.6: Positive oncogenic HPV (not 16/18) test result at routine screening

Women with a positive oncogenic HPV (not 16/18) test result, with a LBC report of negative or prediction of pLSIL/LSIL, should have a repeat HPV test in 12 months.

GRADE: C

PRACTICE POINT

REC6.7: Referral of women with a positive oncogenic HPV (not 16/18) test result and LBC prediction of pHSIL, HSIL or any glandular abnormality

Women with a positive oncogenic HPV (not 16/18) test result, with a LBC prediction of pHSIL/HSIL or any glandular abnormality, should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.

COSENSUS-BASED RECOMMENDATION

REC6.8: Referral to gynaecological oncologist for LBC prediction of invasive disease

Women who have a positive oncogenic HPV (not 16/18) test result with a LBC report of other cancer (squamous, glandular or other) should be referred to a gynaecological oncologist or gynaecological cancer centre for urgent evaluation, ideally within 2 weeks.

EVIDENCE-BASED RECOMMENDATION

REC6.9: Management after repeat HPV test at 12 months, following initial positive oncogenic HPV (not 16/18) test result

At repeat HPV testing 12 months after a positive oncogenic HPV (not 16/18) test result with reflex LBC negative or pLSIL/LSIL:

- if a woman has a positive oncogenic HPV (any type) test result, reflex LBC will be performed and she should be referred for colposcopic assessment
- if oncogenic HPV is not detected, the woman should be advised to return to routine 5-yearly screening.
SUMMARY OF RECOMMENDATIONS

Self-collected vaginal samples

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.10: Oncogenic HPV types not detected in self-collected sample

Women who have undergone HPV testing on a self-collected sample and in whom oncogenic HPV is not detected should be invited to re-screen with a HPV test in 5 years and should be advised to have a clinician-collected sample.

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.11: Referral of women with positive oncogenic HPV (16/18) test result (self-collected sample)

Women who have undergone HPV testing on a self-collected sample and have a positive oncogenic HPV(16/18) test result should be referred directly for colposcopic assessment. A cervical sample for LBC should be obtained at the time of colposcopy and is not required prior to referral.

CONSENSUS-BASED RECOMMENDATION

REC6.12: Women with a positive oncogenic HPV (not 16/18) test result (self-collected sample)

Women who have undergone HPV testing on a self-collected sample and who have a positive oncogenic HPV (not 16/18) test result should be advised to visit their GP or healthcare professional to obtain a cervical sample for LBC:

- If the LBC test result is negative or pLSIL/LSIL, HPV testing should be repeated in 12 months, preferably by a healthcare professional.
- If the LBC test result is pHISIL/HSIL or any glandular abnormality the woman should be referred for colposcopy at the earliest opportunity, ideally within 8 weeks.

CONSENSUS-BASED RECOMMENDATION

REC6.13: Management of 12 month repeat HPV test result after initial positive oncogenic HPV (not 16/18) test result on a self-collected sample

At 12-month repeat HPV testing:

- Women in whom oncogenic HPV is not detected should return to routine 5 yearly screening, and should be advised to have a clinician-collected sample at that time.
- Women with a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment:
 - If the repeat HPV test was clinician-collected, reflex LBC will be available to inform colposcopic assessment.
 - If the repeat HPV test was self-collected, a cervical sample for LBC should be obtained at the time of colposcopy.

PRACTICE POINT

REC6.14: Clinician-collected sample for follow-up HPV test after initial self-collected sample

When follow-up HPV testing is required after an initial positive oncogenic HPV test result, the sample should be collected by a clinician, if possible.

Women should be advised that a clinician-collected sample is preferred because it is more effective and reflex LBC can be performed on the same sample, which avoids a further visit to collect a cervical sample for LBC.

If the woman declines the clinician-collected sample, she can have a self-collected sample and is eligible for reimbursement under the Medical Benefits Schedule.
PRACTICE POINT

REC6.15: Clinician-collected sample after invitation to re-screen

Women who are invited to have a clinician-collected sample, and decline, will not be eligible† for self-collection at that time.

† Not eligible for reimbursement under the Medical Benefits Schedule unless they meet the eligibility criteria for self-collection (aged > 30 years, at least 2 years overdue for cervical screening test, or never been screened) as per NCSP policy.

Women undergoing exit testing

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.16: Women aged 70–74 years in whom oncogenic HPV is not detected (exit testing)

Women can be discharged from the NCSP if they are aged 70–74 years and have a screening test at which oncogenic HPV is not detected.

CONSENSUS-BASED RECOMMENDATION

REC6.17: Referral of women aged 70–74 years with a positive oncogenic HPV test result (exit testing)

Women aged 70–74 who have a positive oncogenic HPV (any type) test result should be referred directly for colposcopic assessment, which should be informed by the result of reflex LBC.

Screening in women older than 75

NCSP RECOMMENDATION

REC6.18: Women aged 75 years or older who request screening

Women who are 75 years or older who have never had a cervical screening test, or have not had one in the previous five years, may request a test and can be screened.

7. COLPOSCOPY

Colposcopy terminology

PRACTICE POINT

REC7.1: New colposcopy terminology

The new terminology adopted by the IFCPC in 2011 should be incorporated into Australian practice.

History, examination and investigation

PRACTICE POINT

REC7.2: Colposcopy and acetic acid

Acetic acid should be applied for 2 minutes to allow sufficient time for aceto-white changes to become apparent. This is especially important when the lesion is low grade as it may take more time to become visible.
CERVICAL SCREENING
GUIDELINES
SUMMARY OF RECOMMENDATIONS

PRACTICE POINT
REC7.3: Colposcopy and VAIN
When the LBC report predicts a squamous abnormality and there is no colposcopically visible cervical lesion, careful colposcopic examination of the vagina should be performed to exclude VAIN, using acetic acid and Lugol's iodine.

PRACTICE POINT
REC7.4: Repeat LBC usually not necessary at time of colposcopy
It is not necessary to take a cervical sample for LBC at the time of colposcopy except in the following circumstances:
• delay in attending for colposcopy > 3 months after referral LBC
• referral LBC is unsatisfactory
• referral LBC is negative but lacks an endocervical component
• prior LBC is not available because the HPV test was performed on a self-collected sample
• the woman has developed symptoms suggestive of cervical cancer since undergoing her screening test.

CONSENSUS-BASED RECOMMENDATION*
REC7.5: Biopsy of high grade lesions
The cervix should be biopsied when the LBC prediction is pH SIL or HSIL and the colposcopic appearance shows major change (see IFCPC definition above) and the abnormal TZ is visible (Type 1 or Type 2 TZ).

PRACTICE POINT
REC7.6: Biopsy visible lesion if suspicious for invasion when T3 TZ colposcopy
In some situations, when there is a visible high-grade lesion on the ectocervix but there is a T3 TZ (lesion extends into canal out of visual range), it may be reasonable to take a cervical biopsy of the visible lesion if there is any suspicion of superficially invasive or invasive carcinoma.

PRACTICE POINT
REC7.7: Biopsy of low-grade lesions is encouraged but not always necessary
Women with a LBC prediction of pLSIL or LSIL and a colposcopic impression of low-grade disease or less may not always require a biopsy. However, biopsy is accepted practice for confirmation of the colposcopic impression and exclusion of high-grade disease, and should be encouraged, especially for less experienced colposcopists.

PRACTICE POINT
REC7.8: Upper genital tract imaging
Upper genital tract imaging should be considered in cases where no lower genital tract abnormality is detected at colposcopy after referral with abnormal glandular cytology (including atypical glandular cells or endocervical cells of undetermined significance). In some women, further investigation, such as endometrial sampling to exclude an endometrial origin for atypical glandular cells, may be required.
SUMMARY OF RECOMMENDATIONS

Treatment

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.9: Colposcopy prior to treatment</td>
</tr>
<tr>
<td>All women should have an adequate(^1) colposcopic assessment prior to treatment.</td>
</tr>
</tbody>
</table>

\(^1\) adequate: the cervix is clearly seen (FCPC 2011 terminology)

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.10: Histopathological confirmation prior to treatment</td>
</tr>
<tr>
<td>Treatment should be reserved for women with histologically confirmed HSIL (CIN2/3) or AIS, except for women requiring diagnostic excisional biopsy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.11: Biopsy prior to ablative treatment</td>
</tr>
<tr>
<td>Women should have a cervical biopsy prior to any ablative treatment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.12: Pathology review of discordant test results</td>
</tr>
<tr>
<td>For women who have had a colposcopy with significant discordance between the histopathology and the referral cytology, both specimens should be reviewed by a pathologist from at least one of the reporting laboratories who should then convey the results of the review to the colposcopist in order to inform the management plan.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRACTICE POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.13: Tertiary referral may be necessary</td>
</tr>
<tr>
<td>In some clinical situations, the woman should be referred to a more experienced colposcopist, a gynaecological oncologist, tertiary colposcopy clinic or gynaecological cancer centre:</td>
</tr>
<tr>
<td>• adenocarcinoma in situ</td>
</tr>
<tr>
<td>• abnormalities in pregnancy</td>
</tr>
<tr>
<td>• immune-deficient women</td>
</tr>
<tr>
<td>• women with multifocal lower genital tract disease.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRACTICE POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.14: Second opinion</td>
</tr>
<tr>
<td>When there is any concern about diagnosis or patient management, a second opinion should be sought and documented.</td>
</tr>
</tbody>
</table>
PRACTICE POINT

REC7.15: The role of multidisciplinary team review
It is not always practical for a colposcopist to access a multidisciplinary team review which is usually conducted in a tertiary referral centre. However, a multidisciplinary team review is particularly helpful when:
• dealing with complex cases where there is discordance between histopathology and referral cytology (e.g. LBC prediction of HSIL, with negative or LSIL histology).
• implementation of treatment is not urgent and therefore it is possible to take the required time to review the findings and optimise the management plan.

PRACTICE POINT

REC7.16: Colposcopy at time of treatment
All treatments should be performed under colposcopic vision, with the exception of cold-knife cone biopsy.

CONSENSUS-BASED RECOMMENDATION*

REC7.17: Criteria for ablative treatment
Ablative therapy should be reserved for women intending to have children, and when the following conditions have all been met:
• TZ is completely visible (Type 1 or Type 2).
• There is no evidence of invasive or glandular disease.
• A biopsy has been performed prior to treatment.
• HSIL (CIN2/3) has been histologically confirmed.
• There is no significant discordance between the histopathology and referral cytology results.

PRACTICE POINT

REC7.18: Depth of ablation
A Type 1 TZ with a HSIL (CIN2/3) lesion requires 6–8 mm (and not more than 10 mm) of cervical ablation to be adequately treated.

CONSENSUS-BASED RECOMMENDATION*

REC7.19: Excision specimen quality and pathology
Excisional therapy should aim to remove the entire TZ with a pre-determined length of cervical tissue, ideally in one piece, with minimal distortion or artefact to the final histological specimen.†

† This is critical for management of suspected or histologically confirmed AIS.

PRACTICE POINT

REC7.20: Excision specimen quality, pathology and very large ectocervical lesion
A very large ectocervical lesion may require removal in two pieces in order to remove the entire lesion. It is still important that the endocervical and stromal margins are suitable for pathological interpretation and that the specimens are accurately oriented and labelled.
PRACTICE POINT

REC7.21: Excisional techniques and surgical competency
Therapeutic colposcopists should use the excisional techniques with which they are comfortable and competent and that produce the best histological specimen.

PRACTICE POINT

REC7.22: Cold-knife cone biopsy: setting
Cold-knife cone biopsy should be performed in an operating theatre, under general anaesthesia, by a gynaecological oncologist or gynaecologist competent in the technique.

PRACTICE POINT

REC7.23: Loop excisional biopsy technique (LEEP/LLETZ)
A single pass of the loop (side to side or posterior to anterior) to produce a specimen in one piece is optimal.

PRACTICE POINT

REC7.24: Loop ‘top-hat’ excisions should be avoided (LEEP/LLETZ)
The ‘top-hat’ excision techniques using a wire loop, in which a second piece of endocervical tissue is removed after the first excision, is not an alternative to a properly performed single-piece Type 3 excision, and should be avoided.

PRACTICE POINT

REC7.25: Cold-knife cone biopsy and AIS
Predicted or histologically confirmed AIS should be treated by a Type 3 excision (usually a cold-knife cone biopsy) performed in an operating theatre, under general anaesthesia, by a gynaecological oncologist or gynaecologist competent in the technique.

PRACTICE POINT

REC7.26: Role of repeat excision in management of SISCCA
In the presence of a superficially invasive squamous carcinoma, if HSIL (CIN2/3) extends to any excision margin, a repeat excision (usually by cold-knife cone biopsy) is recommended.

PRACTICE POINT

REC7.27: Do not treat at first visit with a LBC report of a low-grade lesion
Women who have a LBC prediction of pLSIL/LSIL should not be treated at the first visit.

PRACTICE POINT

REC7.28: Excision required for recurrent disease after ablation
If there is recurrence of high-grade disease after previous ablation, treatment should be by excision.
CERVICAL SCREENING GUIDELINES

SUMMARY OF RECOMMENDATIONS

PRACTICE POINT

REC7.29: Repeat excision not necessarily required for incomplete excision of high-grade lesions

Women who have incomplete excision of HSIL (CIN2/3) with positive endocervical or stromal margins do not necessarily require immediate repeat excision and could be offered test of cure (HPV and LBC) surveillance, with the exception of:

- women aged 50 years or over
- women who may not be compliant with recommended follow-up
- women in whom subsequent adequate colposcopy and follow-up cytology cannot be guaranteed.

8. MANAGEMENT OF DISCORDANT COLPOSCOPIC IMPRESSION, HISTOPATHOLOGY AND REFERRAL LBC PREDICTION

Normal colposcopic findings following LBC prediction of LSIL or HSIL

CONSENSUS-BASED RECOMMENDATION

REC8.1: Normal colposcopy following LBC prediction of negative or pLSIL/LSIL

For women with a positive oncogenic HPV (any type) test result, a LBC report of negative or pLSIL/LSIL, and normal colposcopy, the HPV test should be repeated in 12 months:

- If HPV is not detected at 12 months, the woman should return to routine 5-yearly HPV screening.
- If the woman has a positive oncogenic HPV (not 16/18) test result at 12 months and a LBC report of negative or pLSIL/LSIL, the HPV test should be repeated in another 12 months.
 - If the woman has a positive oncogenic HPV (any type) test at the 24 month HPV test, she should be referred directly for colposcopic assessment, which will be informed by the result of the reflex LBC.
- If the woman has a positive oncogenic HPV (not 16/18) test result at 12 months and a LBC prediction of pH SIL/HSIL or any glandular abnormality, she should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.
- If the woman has a positive oncogenic HPV (16/18) test result at 12 months, she should be referred directly for colposcopic assessment at the earliest opportunity, ideally within 8 weeks, and the reflex LBC result will inform the colposcopy.

PRACTICE POINT

REC8.2: Normal colposcopy following LBC prediction of HSIL: cytopathology review

Cytopathology review is recommended to confirm HSIL before proceeding to excisional treatment for women with a normal colposcopy after a positive oncogenic HPV (any type) test result and an initial LBC prediction of pH SIL/HSIL.

PRACTICE POINT

REC8.3: Normal colposcopy following LBC prediction of HSIL: exclude VAIN

When colposcopic impression is discordant with a referral LBC prediction of HSIL, colposcopic examination of the vagina is indicated to exclude a vaginal intraepithelial neoplasia **before** diagnostic excisional treatment.
CONSENSUS-BASED RECOMMENDATION

REC8.4: Normal colposcopy following LBC prediction of HSIL: diagnostic excision of TZ
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a LBC prediction of HSIL on cytopathology review, diagnostic excision of the TZ should be performed.

CONSENSUS-BASED RECOMMENDATION

REC8.5: Normal colposcopy following LBC prediction of pHSIL: consider diagnostic excision of TZ
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a LBC prediction of pHSIL on cytopathology review, diagnostic excision of the TZ should be considered, though observation is an option.

PRACTICE POINT

REC8.6: Normal colposcopy following LBC prediction of pHSIL: diagnostic excision or observation
Some women with a positive oncogenic HPV test result for whom diagnostic excision of the TZ is recommended due to a confirmed LBC prediction of pHSIL on cytopathology review, despite normal colposcopic findings, may be concerned about the possibility of having unnecessary treatment. The colposcopist may have similar concerns. Women who opt to defer treatment, particularly younger women with concerns about fertility, can be offered observation:

- A HPV test and colposcopy should be repeated at 6 months, and a diagnostic excisional procedure should be reconsidered based on the test results (HPV and reflex LBC, if performed) obtained at that time.
- If oncogenic HPV is not detected, and the colposcopic impression is unchanged, the HPV test should be repeated in 12 months and if oncogenic HPV is not detected, the woman can return to routine 5-yearly screening.

CONSENSUS-BASED RECOMMENDATION

REC8.7: Downgrading of discordant results
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a subsequent LBC report of pLSIL/LSIL or less on cytopathology review, management should be according to the reviewed cytological report (i.e. repeat HPV test in 12 months).

PRACTICE POINT

REC8.8: Colposcopist should manage discordant results
Women with discordant colposcopy and LBC results should have their management supervised by the colposcopist until both the colposcopist and the woman are satisfied with the proposed management plan.
Type 3 TZ (previously termed ‘unsatisfactory’) colposcopy following LBC prediction of LSIL or HSIL

CONSENSUS-BASED RECOMMENDATION

REC8.9: Repeat HPV test after Type 3 TZ colposcopy and referral LBC negative or pLSIL/LSIL

For women who have a positive oncogenic HPV (any type) test result with a LBC report of negative or pLSIL/LSIL, and colposcopy is reported as Type 3 TZ, the HPV test should be repeated in 12 months:
- If oncogenic HPV is not detected at 12 months, the HPV test should be repeated 12 months later.
- If oncogenic HPV is not detected again at the second repeat HPV test, the woman should be advised to return to routine 5-yearly screening.
- If the woman has a positive oncogenic HPV (any type) test result at 12 months, she should be referred directly for colposcopic assessment, with the LBC report available to inform the assessment.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

PRACTICE POINT

REC8.10: Cytopathology review prior to observation for pLSIL/LSIL and Type 3 TZ at colposcopy

When observation is advised, cytopathology review is recommended to confirm the low-grade cytological abnormality.
- If pLSIL/LSIL is confirmed, observation is appropriate.
- If pHISL/HSIL is confirmed, then diagnostic excision of the TZ should be considered.

PRACTICE POINT

REC8.11: Role of ECC in Type 3 TZ colposcopy following LBC prediction of pLSIL/LSIL

Despite a lack of evidence, endocervical curettage can be considered for women who have a positive oncogenic HPV test result (any type) with a LBC report of persistent pLSIL/LSIL and colposcopy reported as Type 3 TZ. A negative ECC may provide additional reassurance for a conservative (observational) approach.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

CONSENSUS-BASED RECOMMENDATION

REC8.12: Diagnostic excision of the TZ should not be performed if there is no cytological or histological evidence of a high-grade lesion after Type 3 TZ colposcopy

For asymptomatic women who have a positive oncogenic HPV (any type) test result, Type 3 TZ colposcopy, and no cytological, colposcopic or histological evidence of a high-grade lesion, further diagnostic procedures (such as diagnostic excision of the transformation zone) should not routinely be performed.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.
PRACTICE POINT

REC8.13: Role of diagnostic excision: exceptions to recommendation (8.12) against diagnostic excision of TZ in the absence of high-grade cytology or histology

Diagnostic excision of the TZ can be offered to certain groups of women who have a positive oncogenic HPV test result, a LBC report of negative or pLSIL/LSIL, and colposcopy reported as Type 3 TZ:†

- women who have completed childbearing
- women who are anxious about cancer risk
- women aged over 50 years
- women who may not be compliant with recommended surveillance.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

CONSENSUS-BASED RECOMMENDATION

REC8.14: Diagnostic excision: Type 3 TZ colposcopy after LBC prediction of pHSIL/HSIL

For women who have a positive oncogenic HPV (any type) test result, a LBC prediction of pHSIL/HSIL after cytopathology review, and Type 3 TZ:† colposcopy, diagnostic excision of the TZ should be performed.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

PRACTICE POINT

REC8.15: Cytopathology review: Type 3 TZ colposcopy following LBC prediction of pHSIL/HSIL

Cytopathology review should be considered to confirm a high-grade cytological abnormality before excision, after a positive oncogenic HPV (any type) test result and an initial LBC prediction of pHSIL/HSIL, when there is a Type 3 TZ colposcopy.

This is particularly important when the LBC prediction is pHSIL because pHSIL has a lower PPV for high-grade disease and the subsequent excision specimens show no evidence of cervical pathology in 45–55% of cases.

PRACTICE POINT

REC8.16: Deferral of treatment following cytopathology review: Repeat HPV test and colposcopy in 6 months

Following cytopathology review, rarely the woman or the clinician wish to defer treatment. In this situation the woman should have a repeat HPV test and colposcopy in 6 months.

- If HPV detected (any type) and LBC pLSIL/LSIL, repeat HPV test in 12 months
- If HPV detected (any type) and LBC pHSIL/HSIL, the woman should have diagnostic Type 3 excision of the TZ.
9. MANAGEMENT OF HISTOLOGICALLY CONFIRMED LOW-GRADE SQUAMOUS ABNORMALITIES

CONSENSUS-BASED RECOMMENDATION

REC9.1: HPV test 12 months after histologically confirmed LSIL (≤ CIN1)
Women who have a positive oncogenic HPV (any type) test result with a LBC report of either negative or pLSIL/LSIL, and histologically confirmed ≤ CIN1 on biopsy, should have a repeat HPV test 12 months later:
- If oncogenic HPV is not detected at the repeat HPV test, the woman should return to routine 5 yearly screening.
- If the repeat test is positive for oncogenic HPV (not 16/18) and the LBC report is negative or pLSIL/LSIL, the woman should have a further repeat HPV test in 12 months.
 - If the second follow-up HPV test is negative the woman should return to routine 5-yearly screening.
 - If the second follow-up test is HPV positive, the woman should be referred for colposcopic assessment informed by reflex LBC.
- If the repeat test is positive for oncogenic HPV (not 16/18) and the LBC report is pHSIL/HSIL, the woman should be referred for colposcopic assessment.
- If the repeat test is positive for oncogenic HPV (16/18), the woman should be referred for colposcopic assessment informed by the reflex LBC.

CONSENSUS-BASED RECOMMENDATION

REC9.2: LSIL (≤ CIN1) should not be treated
Women who have a positive oncogenic HPV (any type) test result with a LBC report of negative or pLSIL/LSIL, who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), should not be treated, because these lesions are considered to be an expression of a productive HPV infection.

CONSENSUS-BASED RECOMMENDATION

REC9.3: Diagnostic excision when HSIL confirmed on cytopathology review
Women who have a positive oncogenic HPV test result (any type) with a LBC prediction of pHSIL (confirmed after cytopathology review), and who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), should be offered diagnostic excision of the TZ.

CONSENSUS-BASED RECOMMENDATION

REC9.4: Option for observation following cytological prediction of pHSIL
Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of pHSIL (confirmed after cytopathology review), and who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), could be offered diagnostic excision of the TZ.

If the colposcopist considers a period of observation is preferable to treatment, or the woman with these findings wishes to defer diagnostic excision, she can be offered observation with a HPV test and colposcopy at 6–12 months:
- If oncogenic HPV is not detected at the repeat test, the HPV test should be repeated again in 12 months.
- If the second follow-up test is negative, the woman should return to routine 5-yearly screening.
- If the woman has a positive oncogenic HPV (any type) test result at the repeat test, her reflex LBC report is negative or pLSIL/LSIL, and her colposcopic impression is normal or LSIL, the HPV test should be repeated annually.
 - When oncogenic HPV is not detected at two consecutive annual tests, the woman can return to 5-yearly screening.
 - If the woman has a positive oncogenic HPV (any type) test result at the repeat test, and her LBC prediction is pHSIL/HSIL or any glandular abnormality, she should have a diagnostic excision of the TZ.
PRACTICE POINT

REC9.5: Criteria for observation following cytological prediction of pH SIL

Women should not be offered observation unless the colposcopic assessment meets all the following conditions:

• Colposcopy is adequate.
• TZ is completely visualised (Type 1 or 2 TZ").
• LSIL (≤ CIN1) has been confirmed on histopathological review.

^ FCPC: International Federation of Cervical Pathology and Colposcopy 2011

PRACTICE POINT

REC9.6: Cytology review essential when test results are discordant

For women who have a positive oncogenic HPV (any type) test result with a histologically confirmed LSIL (≤ CIN1 after LBC prediction of pH SIL/HSIL, both the cytology and the histopathology should be reviewed by a pathologist from at least one of the reporting laboratories, who should then convey the results of the review to the colposcopist in order to inform the management plan.

10. MANAGEMENT OF HISTOLOGICALLY CONFIRMED HIGH-GRADE SQUAMOUS ABNORMALITIES

Diagnosis of high-grade squamous abnormalities

CONSENSUS-BASED RECOMMENDATION*

REC10.1: Histological diagnosis prior to treatment

For women who have a visible lesion at colposcopy, histological confirmation of HSIL is recommended before undertaking definitive treatment.

Treatment of high-grade squamous abnormalities

CONSENSUS-BASED RECOMMENDATION*

REC10.2: Treatment for HSIL (CIN2)

Women with a histological diagnosis of HSIL (CIN2) should be treated in order to reduce the risk of developing invasive cervical carcinoma.

PRACTICE POINT

REC10.3: p16 should be used to clarify diagnosis of HSIL (CIN2)

The use of p16 immunohistochemistry is recommended to stratify the management of HSIL (CIN2) into immediate treatment or a period of observation.
SUMMARY OF RECOMMENDATIONS

PRACTICE POINT

REC10.4: HSIL (CIN2) and observation

In some circumstances, it may be acceptable to offer a period of observation (generally 6–12 months) to women who have a histological diagnosis of HSIL (CIN2), and this would usually be supervised by an experienced colposcopist or at a tertiary centre. Observation may be considered for:

- women who have not completed childbearing
- women with discordant histology and LBC prediction of pLSIL/LSIL
- women with focal minor changes on colposcopy and HSIL (CIN2) on histology
- women recently treated for HSIL (CIN2).

CONSENSUS-BASED RECOMMENDATION

REC10.5: Treatment of HSIL (CIN3)

Women with a histological diagnosis of HSIL (CIN3) should be treated in order to reduce the risk of developing invasive cervical carcinoma.

REC10.6: Referral of women with invasive disease

A woman with a histologically confirmed diagnosis of invasive or superficially invasive (squamous cell carcinoma) should be referred to a gynaecological oncologist or a gynaecological cancer centre for multidisciplinary team review.

Test of Cure after treatment for HSIL (CIN2/3)

REC10.7: Test of Cure after treatment for HSIL (CIN2/3)

A woman who has been treated for HSIL (CIN2/3) should have a co-test† performed at 12 months after treatment, and annually thereafter, until she receives a negative co-test on two consecutive occasions, when she can return to routine 5 yearly screening.

† Co-testing can be performed by the woman's usual healthcare professional.

REC10.8: Abnormal Test of Cure results: positive oncogenic HPV (16/18) test result

If, at any time post treatment, the woman has a positive oncogenic HPV (16/18) test result, she should be referred for colposcopic assessment (regardless of the reflex LBC result).

REC10.9: Abnormal Test of Cure results: LBC pHsIL/HSIL or glandular abnormality

If, at any time during Test of Cure, the woman has a LBC prediction of pHsIL/HSIL or any glandular abnormality, irrespective of HPV status, she should be referred for colposcopic assessment.
CONSENSUS-BASED RECOMMENDATION

REC10.10: Abnormal Test of Cure results: positive oncogenic HPV (not 16/18) test result

If, at any time post-treatment, the woman has a positive oncogenic HPV (not 16/18) test result and a LBC report of negative or prediction of pLSIL/LSIL, she should continue to have annual co-testing until she has a negative co-test on two consecutive occasions, when she can return to routine 5-yearly screening.

PRACTICE POINT

REC10.11: Fluctuating Test of Cure results: positive oncogenic HPV (not 16/18) test result and/or pLSIL/LSIL

Some women may experience fluctuating results with a positive oncogenic HPV (not 16/18) test result and/or LBC prediction of pLSIL/LSIL. These women do not need colposcopic review, but if the woman is anxious, a colposcopic assessment may be appropriate to provide reassurance.

PRACTICE POINT

REC10.12: Colposcopy is not necessary at the initial post-treatment visit

A post-treatment colposcopic assessment at 4–6 months has been the usual practice under pre-renewal NCSP guidelines. This practice is not evidence-based, but may provide reassurance to both the patient and clinician regarding the visual appearance of the cervix and allows for the discussion of any other relevant issues (bleeding, fertility, related symptoms etc.) following treatment.

The post-treatment review should:
- include speculum examination of the vagina and cervix (but colposcopy is not considered necessary)
- not involve HPV testing or LBC.

Subsequent post-treatment Test of Cure surveillance should be performed by the woman’s GP or health professional, who should follow the recommendations for the management of any abnormal test results.

11. MANAGEMENT OF GLANDULAR ABNORMALITIES

Investigation of cytological glandular abnormalities

CONSENSUS-BASED RECOMMENDATION

REC11.1: Colposcopy referral for atypical glandular/endocervical cells

Women who have a positive oncogenic HPV (any type) test result with a LBC report of atypical glandular/endocervical cells of undetermined significance should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist.

CONSENSUS-BASED RECOMMENDATION

REC11.2: Follow-up after normal colposcopy and LBC prediction of atypical glandular/endocervical cells

Women who have a positive oncogenic HPV test result (any type) with a LBC prediction of atypical glandular/endocervical cells of undetermined significance and normal colposcopy can be offered repeat co-testing (HPV and LBC) at 6–12 months:
- If the follow-up co-test is negative, co-testing should be repeated annually until the woman has two consecutive negative co-tests, after which she can return to 5-yearly screening.
- If there is either a positive oncogenic HPV (any type) test result or an abnormal LBC (any report other than negative), the woman should be referred for colposcopic assessment, and diagnostic excision of the TZ should be considered.
PRACTICE POINT

REC11.3: Exclusion of upper genital tract disease before diagnostic excision
For women who have a positive oncogenic HPV test result (any type) and who have atypical glandular/endocervical cells of undetermined significance on cytology, investigation of the upper genital tract (endometrium, fallopian tube or ovary) using endometrial sampling and/or pelvic ultrasound should be considered, before diagnostic excision of the TZ is performed or the woman is advised to return for colposcopy and further tests in 6–12 months, in these groups of women:
- women aged over 45 years
- women aged over 35 years with a BMI greater than 30
- women diagnosed with polycystic ovarian syndrome
- women with abnormal vaginal bleeding.

PRACTICE POINT

REC11.4: Role of immediate diagnostic excision of TZ versus observation
Immediate diagnostic excision of the TZ can be considered for women with atypical glandular/endocervical cells of undetermined significance if they prefer not to take a conservative observational approach. This might apply to:
- women aged over 45 years
- women who have completed childbearing
- women who are particularly anxious about their cancer risk.

CONSENSUS-BASED RECOMMENDATION*

REC11.5: Colposcopy for possible high-grade glandular lesions
Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of possible high-grade glandular lesion should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist. Diagnostic excision of the endocervical TZ should be performed in most cases.

PRACTICE POINT

REC11.6: Women who decline treatment for possible high-grade lesions
Women with a LBC prediction of possible high-grade glandular lesion who decline the recommended excision should be offered surveillance with co-testing (HPV and LBC) and colposcopy in 6 months:
- If in 6 months the woman has a positive result, she should be encouraged to have a diagnostic excision of the TZ.
- It is important that the woman understands the potential risk of underlying disease (21.5% risk of AIS and 5.5% risk of invasive cancer).

CONSENSUS-BASED RECOMMENDATION*

REC11.7: Colposcopy referral for AIS
Women with a LBC prediction of AIS should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or to a gynaecological oncologist. Diagnostic excision of the endocervical TZ should be performed.
CONSENSUS-BASED RECOMMENDATION*
REC11.8: Referral to gynaecological oncologist for LBC prediction of invasive disease
Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of invasive adenocarcinoma should be referred to a gynaecological oncologist or a gynaecological oncology centre for urgent evaluation, ideally within 2 weeks.

CONSENSUS-BASED RECOMMENDATION*
REC11.9: Specimen for histological assessment of glandular abnormalities
When diagnostic excision of the TZ is performed in the investigation of glandular abnormalities, the method chosen should ensure that a single, intact specimen with interpretable margins is obtained for histological assessment.

PRACTICE POINT
REC11.10: Cold-knife cone biopsy is the ‘gold standard’ for glandular abnormalities
Cold-knife cone biopsy should be considered the ‘gold standard’ for the diagnostic assessment of glandular lesions. However, a diathermy excisional procedure may be appropriate in some circumstances and could provide an appropriate surgical specimen when performed by a gynaecologist with appropriate training, experience and expertise.

PRACTICE POINT
REC11.11: Size of cone biopsy
The depth and extent of the cone biopsy should be tailored to the woman's age and fertility requirements. A Type 3 Excision of the TZ is usually required.

PRACTICE POINT
REC11.12: Cone biopsy excision margins and multifocal AIS
Multifocal disease has been reported in 13–17% of cases of AIS, though the majority of lesions are unifocal. If the margin is close but apparently excised (less than 5 mm), close surveillance by Test of Cure, as recommended in these guidelines, is considered appropriate. In this situation further excision is not considered necessary.

Follow-up after excisional treatment for AIS
CONSENSUS-BASED RECOMMENDATION*
REC11.13: Follow-up of completely excised AIS
Women with histologically confirmed AIS who have undergone complete excision with clear margins should have annual co-testing indefinitely.†
If any abnormal result is obtained on follow-up co-testing, the woman should be referred for colposcopic assessment.
† Until sufficient data become available to support cessation of testing.
CONSENSUS-BASED RECOMMENDATION

REC11.14: Repeat excision for incompletely excised AIS
If AIS is incompletely excised (positive endocervical margin and/or deep stromal margin, not ectocervical margin) or if the margins cannot be assessed, further excision to obtain clear margins should be performed.

CONSENSUS-BASED RECOMMENDATION

REC11.15: Role of hysterectomy in AIS
In women who have been treated for AIS by excision, with clear margins, there is no evidence to support completion hysterectomy. In this situation, hysterectomy is not recommended.

12. SCREENING IN ABORIGINAL AND TORRES STRAIT ISLANDER WOMEN

CONSENSUS-BASED RECOMMENDATION

REC12.1: Cervical Screening for Aboriginal and Torres Strait Islander women
Aboriginal and Torres Strait Islander women should be invited and encouraged to participate in the NCSP and have a 5-yearly HPV test, as recommended for all Australian women.

PRACTICE POINT

REC12.2: Invitations to screen for Aboriginal and Torres Strait Islander women
Specific efforts should be made to maximise delivery of invitations to Aboriginal and Torres Strait Islander women.

PRACTICE POINT

REC12.3: Cervical screening services for Aboriginal and Torres Strait Islander women
Specific efforts should be made to provide screening, diagnostic and treatment services that are accessible and culturally appropriate to Aboriginal and Torres Strait Islander women.

PRACTICE POINT

REC12.4: Data collection and recording Aboriginal and Torres Strait Islander status
Healthcare professionals should ask all women whether they identify as Aboriginal or Torres Strait Islander, and a woman’s Aboriginal and Torres Strait Islander status should be recorded on the pathology request form in accordance with the ABS classification and standards.
13. SCREENING AFTER TOTAL Hysterectomy

CONSENSUS-BASED RECOMMENDATION

REC13.1: Total hysterectomy for benign disease

Women with a normal cervical screening history, who have undergone hysterectomy for benign disease (e.g. menorrhagia, uterine fibroids or utero-vaginal prolapse), and have no cervical pathology at the time of hysterectomy, do not require further screening or follow up.

CONSENSUS-BASED RECOMMENDATION

REC13.2: Total hysterectomy after completed Test of Cure

Women who have had a total hysterectomy with no evidence of cervical pathology, have previously been successfully treated for histologically confirmed HSIL and have completed Test of Cure, do not require further follow-up. These women should be considered as having the same risk for vaginal neoplasia as the general population who have never had histologically confirmed HSIL and have a total hysterectomy.

If unexpected LSIL or HSIL is identified in the cervix at the time of hysterectomy, then these women require follow-up with an annual co-test on a specimen from the vaginal vault until they have a negative co-test on two consecutive occasions.

CONSENSUS-BASED RECOMMENDATION

REC13.3: Total hysterectomy after adenocarcinoma in situ (AIS)

Women who have had a total hysterectomy, have been treated for AIS, and are under surveillance, should have a co-test on a specimen from the vaginal vault at 12 months and annually thereafter, indefinitely.†

Women who have a total hysterectomy, as completion therapy or following incomplete excision of AIS at cold-knife cone biopsy or diathermy excision, should have a co-test on a specimen from the vaginal vault at 12 months and annually thereafter, indefinitely.

† Until sufficient data become available to support cessation of testing

CONSENSUS-BASED RECOMMENDATION

REC13.4: Total hysterectomy for treatment of high-grade CIN in the presence of benign gynaecological disease

Women who have had a total hysterectomy as definitive treatment for histologically confirmed HSIL in the presence of benign gynaecological disease, irrespective of cervical margins, should have a co-test on a specimen from the vaginal vault at 12 months after treatment and annually thereafter until the woman has tested negative by both tests on two consecutive occasions.

After two annual consecutive negative co-tests, the woman can be advised that no further testing is required.

CONSENSUS-BASED RECOMMENDATION

REC13.5: Total hysterectomy after histologically confirmed HSIL without Test of Cure

Women who have been treated for histologically confirmed HSIL, are under surveillance or have returned to routine screening without Test of Cure, and have had a total hysterectomy with no evidence of cervical pathology, should have a co-test on a specimen from the vaginal vault at 12 months and annually until the woman has tested negative on two consecutive occasions.

After two annual consecutive negative co-tests, the woman can be advised that no further testing is required.
CONSENSUS-BASED RECOMMENDATION

REC13.6: Total hysterectomy and no screening history
Women who have had a total hysterectomy with no evidence of cervical pathology, and whose cervical screening history is not available, should have a HPV test on a specimen from the vaginal vault at 12 months and annually thereafter until they have a negative HPV test on two consecutive occasions.
After two annual consecutive negative HPV tests, women can be advised that no further testing is required.

PRACTICE POINT

REC13.7: Colposcopy referral for any positive co-test result following total hysterectomy
Women who have had a total hysterectomy and are under surveillance with co-testing, and have a positive oncogenic HPV (any type) test result and/or any cytological abnormality, should be referred for colposcopic assessment.

PRACTICE POINT

REC13.8: Vaginal bleeding following total hysterectomy
Women who have vaginal bleeding† following total hysterectomy should be assessed by their GP or gynaecologist, regardless of the results of any surveillance tests.
† Vaginal bleeding is quite common in the early weeks following hysterectomy and, where appropriate, should be investigated by the treating gynaecologist.

PRACTICE POINT

REC13.9: Total hysterectomy after genital tract cancer
Women who have been treated for cervical or endometrial cancer are at risk of recurrent cancer in the vaginal vault. These women should be under ongoing surveillance from a gynaecological oncologist. Therefore, they will be guided by their specialist regarding appropriate surveillance and this is outside the scope of these guidelines.

PRACTICE POINT

REC13.10: Subtotal hysterectomy
Women who have undergone subtotal hysterectomy (the cervix is not removed) should be invited to have 5-yearly HPV testing in accordance with the recommendation for the general population. Any detected abnormality should be managed according to these guidelines.

14. SCREENING IN PREGNANCY

CONSENSUS-BASED RECOMMENDATION

REC14.1: Positive oncogenic HPV (not 16/18) test result with LBC negative or pLSIL/LSIL in pregnancy
Pregnant women who have a positive oncogenic HPV (not 16/18) test result with a LBC report of negative or prediction of pLSIL/LSIL should have a repeat HPV test in 12 months.
CONSENSUS-BASED RECOMMENDATION

REC14.2: Positive oncogenic HPV (not 16/18) test result with LBC pHSIL/HSIL or any glandular abnormality in pregnancy

Pregnant women who have a positive oncogenic HPV (not 16/18) test result with a LBC prediction of pHSIL/HSIL or any glandular abnormality should be referred for early† colposcopic assessment.

† When practical and not deferred until the postpartum period.

CONSENSUS-BASED RECOMMENDATION

REC14.3: Positive HPV (16/18) test result in pregnancy

Pregnant women who have a positive oncogenic HPV (16/18) test result should be referred for early† colposcopic assessment regardless of their LBC test result.

† When practical and not deferred until the postpartum period.

CONSENSUS-BASED RECOMMENDATION*

REC14.4: Referral of pregnant women with invasive disease

Pregnant women should be referred and seen within 2 weeks by a gynaecological oncologist/gynaecological cancer centre for multidisciplinary team review and management in the following situations:

- LBC prediction of invasive disease
- Colposcopic impression of invasive or superficially invasive squamous cell carcinoma of the cervix
- Histologically confirmed diagnosis of invasive or superficially invasive squamous cell carcinoma of the cervix.

CONSENSUS-BASED RECOMMENDATION*

REC14.5: Colposcopy during pregnancy

The aim of colposcopy in pregnant women is to exclude the presence of invasive cancer and to reassure them that their pregnancy will not be affected by the presence of an abnormal cervical screening test result.

PRACTICE POINT

REC14.6: Colposcopy during pregnancy

Colposcopy during pregnancy should be undertaken by a colposcopist experienced in assessing women during pregnancy.

CONSENSUS-BASED RECOMMENDATION*

REC14.7: Cervical biopsy in pregnancy is usually unnecessary

Biopsy of the cervix is usually unnecessary in pregnancy, unless invasive disease is suspected on colposcopy or reflex LBC predicts invasive disease.
CONSENSUS-BASED RECOMMENDATION

REC14.8: Defer treatment until after pregnancy
Definitive treatment of a suspected high-grade lesion, except invasive cancer, may be safely deferred until after the pregnancy.

PRACTICE POINT

REC14.9: Follow-up assessment after pregnancy
If postpartum follow-up assessment (colposcopy and/or HPV test and reflex LBC if necessary) is required, it should be done no less than 6 weeks after delivery and preferably at 3 months. This interval is optimal to reduce the risk of reflex LBC interpretation difficulties or unsatisfactory reflex LBC.

The cervical sample (for HPV test and reflex LBC if necessary) could be collected at the time of postpartum check or at the time of the colposcopic assessment.

PRACTICE POINT

REC14.10: Vaginal oestrogen prior to postpartum colposcopy
For women who are breastfeeding, the use of intra-vaginal oestrogen cream or pessary† prior to colposcopy may improve visualisation of the cervix and the quality of any cervical sample for LBC.

† Daily for two weeks and cease approximately 3 days before colposcopy.

PRACTICE POINT

REC14.11: Cervical screening in pregnancy
Routine antenatal and postpartum care should include a review of the woman’s cervical screening history. Women who are due or overdue for screening should be screened.

PRACTICE POINT

REC14.12: Cervical screening in pregnancy
A woman can be safely screened at any time during pregnancy, provided that the correct sampling equipment is used. A cytobrush or combi-brush should not be inserted into the cervical canal because of the risk of associated bleeding, which may distress women.

PRACTICE POINT

REC14.13: Self-collection in pregnancy
Self-collection for HPV testing is not recommended in pregnancy.
CERVICAL SCREENING
GUIDELINES

SUMMARY OF RECOMMENDATIONS

15. SCREENING IN WOMEN WHO EXPERIENCED EARLY SEXUAL INTERCOURSE OR HAVE BEEN VICTIMS OF SEXUAL ABUSE

MSAC EVIDENCE-BASED RECOMMENDATION

REC15.1: Routine cervical screening is not recommended in young women

Routine cervical screening is not recommended in women under the age of 25 years.

CONSENSUS-BASED RECOMMENDATION

REC15.2: Early sexual activity and cervical screening in young women

For women who experienced first sexual activity at a young age (<14 years) and who had not received the HPV vaccine before sexual debut, a single HPV test between 20 and 24 years of age could be considered on an individual basis.

CONSENSUS-BASED RECOMMENDATION

REC15.3: Women with abnormal vaginal bleeding

Women at any age who have signs or symptoms suggestive of cervical cancer or its precursors, should have a co-test† and be referred for appropriate investigation to exclude genital tract malignancy.

† Co-testing (HPV and LBC) is recommended as the presence of blood has the potential to adversely affect the sensitivity of any of the available tests.

16. SCREENING IN IMMUNE-DEFICIENT WOMEN

CONSENSUS-BASED RECOMMENDATION

REC16.1: Immune-deficient women in whom oncogenic HPV is not detected

Immune-deficient women who have a HPV test in which oncogenic HPV types are not detected should be screened every 3 years with a HPV test.

CONSENSUS-BASED RECOMMENDATION

REC16.2: Colposcopy referral: positive oncogenic HPV test result (any type) in immune-deficient women

Women who are immune-deficient and have a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment informed by the reflex LBC.

CONSENSUS-BASED RECOMMENDATION

REC16.3: Colposcopy assessment and treatment in immune-deficient women

Assessment and treatment of immune-deficient women with screen-detected abnormalities should be by an experienced colposcopist or in a tertiary centre.
Summary of Recommendations

Consensus-Based Recommendation

REC16.4: Colposcopy of whole lower genital tract in immune-deficient women

The entire lower anogenital tract should be assessed, as the same risk factors apply for cervical, vaginal, vulval, perianal and anal lesions.

Consensus-Based Recommendation

REC16.5: Treatment in immune-deficient women

When treatment of the cervix is considered necessary in immune-deficient women, it should be by excisional methods.

Practice Point

REC16.6: Histological abnormalities of the cervix in immune-deficient women

Women with histologically confirmed abnormalities should be managed according to the same guidelines as women who are not immune-deficient.

Practice Point

REC16.7: Test of Cure for treated immune-deficient women

Women who are immune-deficient and treated for HSIL (CIN2/3) should have follow-up with Test of Cure as recommended in these guidelines. Women who complete Test of Cure should return to routine 3-yearly screening with a HPV test.

Practice Point

REC16.8: Screening before solid organ transplantation

Women aged between 25 and 74 years should have a review of cervical screening history when they are added to the organ transplant waiting list and while they remain on the waiting list, to confirm they are up to date with recommended screening for the general population. Women who are overdue for screening, or become due while on the waiting list, should be screened with a HPV test so that any abnormalities can be investigated or treated as necessary prior to transplantation and commencement of immunosuppressive therapy.

Practice Point

REC16.9: Screening women with a new diagnosis of HIV

Women aged between 25 and 74 years who have a new diagnosis of HIV should have a review of their cervical screening history to ensure they are up to date with screening in line with the recommended 3-yearly interval for this group.

Practice Point

REC16.10: Other groups that may require special consideration

The groups listed below could be considered for screening every 3 years with a HPV test in accordance with the recommendation for HIV-positive women and solid organ transplant recipients:

- women with congenital (primary) immune deficiency
- women who are being treated with immunosuppressant therapy for autoimmune disease (e.g. inflammatory bowel disease, systemic lupus erythematosus, rheumatoid arthritis, neuromyelitis optica, sarcoidosis)
- allogenic bone marrow transplant recipients treated for graft versus host disease.
PRACTICE POINT

REC16.11: Regular screening for immune-deficient women
Women who are immune deficient should be educated regarding the increased risk from HPV infection and encouraged to attend for regular screening.

PRACTICE POINT

REC16.12: Young women with long term immune deficiency
For young women who are sexually active and who have been immune deficient for more than 5 years, a single HPV test between 20 and 24 years of age could be considered on an individual basis (regardless of HPV vaccination status).

PRACTICE POINT

REC16.13: Guidance for immune-deficient women and their healthcare professionals
It is important that immune-deficient women and their healthcare professionals are guided by a clinical immunology specialist when using these guidelines.

17. SCREENING IN DES-EXPOSED WOMEN

CONSENSUS-BASED RECOMMENDATION

REC17.1: Screening in DES-exposed women
Women exposed to DES in utero should be offered an annual co-test and colposcopic examination of both the cervix and vagina indefinitely.

CONSENSUS-BASED RECOMMENDATION*

REC17.2: Colposcopy referral for abnormalities in DES-exposed women
Women exposed to DES in utero who have a screen-detected abnormality should be managed by an experienced colposcopist.

PRACTICE POINT

REC17.3: Daughters of women exposed to DES
These women should be screened in accordance with the NCSP policy (5-yearly HPV testing). Evidence of an adverse effect on the daughters of women exposed to DES in utero has not been found. However, if these women have concerns, testing similar to that recommended for their DES-exposed mothers could be considered on an individual basis. Self-collection for HPV testing is not recommended.
18. INVESTIGATION OF ABNORMAL VAGINAL BLEEDING

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.1: Women with abnormal vaginal bleeding</td>
</tr>
<tr>
<td>Women at any age who have signs or symptoms suggestive of cervical cancer should have a co-test, and referral for appropriate investigation to exclude genital tract malignancy should be considered.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.2: Abnormal vaginal bleeding and testing for HPV and LBC</td>
</tr>
</tbody>
</table>
| When women present with abnormal vaginal bleeding, appropriate investigations, which may include a cervical sample for a co-test,† should be performed and not delayed due to the presence of blood.
† The woman’s recent cervical screening history should also be considered. |

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.3: Postcoital bleeding in pre-menopausal women</td>
</tr>
</tbody>
</table>
| Pre-menopausal women who have a single episode of postcoital bleeding and a clinically normal cervix do not need to be referred for colposcopy if oncogenic HPV is not detected and LBC is negative.
If postcoital bleeding recurs or persists despite a negative co-test women should be referred to a gynaecologist for appropriate assessment, including colposcopy, to exclude genital tract malignancy. |

<table>
<thead>
<tr>
<th>PRACTICE POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.4: Postcoital bleeding and sexually transmitted infections</td>
</tr>
<tr>
<td>Sexually transmitted infections, including Chlamydia infection, should be considered and, when appropriate, excluded in all women presenting with postcoital bleeding. It is necessary to obtain a sexual health history and perform appropriate tests and investigations.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.5: Symptomatic women with LBC prediction of cervical cancer</td>
</tr>
<tr>
<td>Women with symptoms and a LBC prediction of invasive cervical cancer should be referred to a gynaecological oncologist or gynaecological cancer centre for assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.6: Women with intermenstrual bleeding may require specialist referral</td>
</tr>
<tr>
<td>Women with persistent and/or unexplained intermenstrual bleeding require appropriate investigation and should be referred for specialist gynaecological assessment, regardless of any test results.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC18.7: Postmenopausal women with vaginal bleeding require specialist referral</td>
</tr>
<tr>
<td>Postmenopausal women with any vaginal bleeding, including postcoital bleeding, should be referred for a specialist gynaecological assessment, to exclude genital tract malignancy.</td>
</tr>
</tbody>
</table>
20. TRANSITION TO THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM

PRACTICE POINT

REC20.1: HPV test replaces the Pap test

All Pap tests are replaced by HPV testing.

Conventional Pap tests are no longer used.

Reflex LBC will be performed on any sample with a positive oncogenic HPV (any type) test result.

Co-testing (HPV and LBC) to be performed only as recommended in these guidelines, in the follow-up of screen-detected abnormalities or the investigation of abnormal vaginal bleeding.

PRACTICE POINT

REC20.2: HPV testing for women in follow-up after pLSIL/LSIL

Women who are in follow-up for pLSIL/LSIL cytology in the previous program (pre-renewal NCSP) should have a HPV test at their next scheduled follow-up appointment.

- Women with a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment informed by reflex LBC.
- If oncogenic HPV is not detected, the woman can return to 5-yearly screening.

PRACTICE POINT

REC20.3: Colposcopic management of a prior screen-detected abnormality should continue

Women who have been referred for colposcopic assessment following any cytological abnormality in the pre-renewal NCSP should continue their colposcopic management according to these guidelines.

PRACTICE POINT

REC20.4: Prior treatment and Test of Cure

Women who have been treated for HSIL (CIN2/3) in the pre-renewal NCSP and are undergoing, or have not yet commenced Test of Cure, should start or continue Test of Cure in accordance with these guidelines.

Women should have an annual co-test (HPV and LBC) performed at 12 months after treatment, and annually thereafter, until both tests are negative on two consecutive occasions, when they can return to routine 5-yearly screening.

PRACTICE POINT

REC20.5: Prior treatment for AIS

Women who have been treated for AIS in the pre-renewal NCSP, and are undergoing or have not yet commenced surveillance, should have annual co-testing (HPV and LBC) indefinitely.†

† Until sufficient data become available that may support a policy decision that cessation of testing is appropriate.
1.

CERVICAL CANCER IN AUSTRALIA

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
Dr Alison Budd – Co-author
Professor Ian Hammond – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Introduction

Australian rates of cervical cancer incidence and death are among the lowest in the world.\(^1\)

This is largely attributed to the successful introduction in 1991 of the National Cervical Screening Program (NCSP). The NCSP is an organised approach to cervical screening that operates as a joint program of the Australian Government and the state and territory governments. It is implemented by a range of health professionals, including general practitioners, women’s health nurses, gynaecologists, gynaecological oncologists, cytologists and pathologists.

In 1982 cervical cancer was the sixth most common cancer in Australian women and by 1991 it had fallen to eighth ranking, presumably related to opportunistic screening for cervical cancer. Following the introduction of the NCSP in 1991 there was a steady fall in the incidence of cervical cancer, and by 2009 it ranked the twelfth most common cancer in Australian women.\(^2\)

Table 1.1 shows the Australian incidence and mortality rates for cervical cancer (age-standardised to the World Standard Population) in comparison with other countries for the period up to and including 2012.

<table>
<thead>
<tr>
<th>Country</th>
<th>Incidence (ASRW)(^a)</th>
<th>Mortality (ASRW)(^a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sweden</td>
<td>7.4</td>
<td>1.9</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>7.1</td>
<td>1.8</td>
</tr>
<tr>
<td>USA</td>
<td>6.6</td>
<td>2.7</td>
</tr>
<tr>
<td>Canada</td>
<td>6.3</td>
<td>1.7</td>
</tr>
<tr>
<td>Australia</td>
<td>5.5 (ASR)</td>
<td>1.6 (ASR)</td>
</tr>
<tr>
<td>New Zealand</td>
<td>5.3</td>
<td>1.4</td>
</tr>
<tr>
<td>Finland</td>
<td>4.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>

ASRW: age-standardised rate (World Standard Population) except for Australia (see note)
ASR: age-standardised rate (Australian population)

Notes: Incidence is the number of new cases of cervical cancer per 100,000 women, age-standardised to the World Standard Population. Mortality is the number of deaths from cervical cancer per 100,000 women, age-standardised to the World Standard Population. While incidence and mortality rates have been age-standardised to the World Standard Population, which is appropriate for international comparisons, the remainder of incidence and mortality rates have been age-standardised to the Australian population at 30 June 2001, which is appropriate for comparisons within Australia (such as over time or across population groups).

Source: GLOBOCAN (2012)\(^1\)
Incidence and mortality from cervical cancer

Since 1991 Australian incidence and mortality rates for cervical cancer have decreased by approximately 50%, and are among the lowest in the world.[2]

Figure 1.1 shows the time trends in incidence of cervical cancer in Australian women aged 20–69 years. The ASR for cervical cancer incidence fell slowly from 14.2 new cases per 100,000 women in 1982, to 13.3 in 1991,[2] probably related to uptake of opportunistic screening. The organised approach provided by the NCSP commenced in 1991, following which the rate fell rapidly to reach a plateau of about 7 new cases per 100,000 women between 2002 and 2011.[2] Overall, the incidence rate fell by 51% between 1982 and 2011. A plateau in incidence rates was evident from about 2004.

The ASR for cervical cancer incidence followed a similar trend when considering only women in the target age group 20–69 years, falling only slightly from 19.0 new cases per 100,000 women in 1982, to 17.2 in 1991, before falling rapidly to reach a plateau of about 9 new cases per 100,000 women between 2002 and 2011 (**Figure 1.1**).

NOTE:
1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.

In 1982 there were 963 new cases of cervical cancer in Australia, 826 of which occurred in the target age group 20–69 years. By 1994, a few years after the introduction of the NCSP, the number of new cases peaked at 1144 new cases (937 in women 20–69 years). By 2002 this had decreased to 690 new cases and of these 558 occurred in the target age group 20–69 years. In 2011 there were 801 new cases overall, with an ASR of 6.9 per 100,000 women, and 682 occurred in women in the target age group of 20–69 years.[2]
Figure 1.2 shows the time trends in mortality from cervical cancer in Australian women aged 20–69 years. In 2012 there were 226 deaths from cervical cancer (with an ASR of 1.8 per 100,000 women), and 143 occurred in the target age group of 20–69 years. A plateau in mortality rates was reached in about 2004.

Figure 1.2. Mortality from cervical cancer in women aged 20–69 years, 1982–2012

![Mortality from cervical cancer in women aged 20–69 years, 1982–2012](chart)

NOTE: 1. Mortality rate is the number of deaths from cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.
Source: AIHW analysis of the National Mortality Database

INCIDENCE RATES FOR CERVICAL CANCER BY HISTOLOGICAL TYPE OVER TIME

Figure 1.3 shows the time trends between 1989 and 2010 in the incidence of the various histological types of cervical cancer.

Figure 1.3. Incidence of carcinoma of the cervix (squamous cell carcinoma, adenocarcinoma, adenosquamous carcinoma and other carcinomas) in women aged 20–69 years, 1982–2011

![Incidence of carcinoma of the cervix](chart)

NOTE: 1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.
Source: AIHW analysis of the Australian Cancer Database 2011
The incidence of squamous cancers fell between 1991 and 2002, with little fall thereafter. In contrast, the incidence of adenocarcinoma has been relatively stable. In 1982 the ASR of adenocarcinoma was 2.1 new cases per 100,000 women; by 1991 it had risen to 2.8, from which it fell to a minimum of 2.0 in 2002 and thereafter rose again to nearly reach the levels of the early 1990s. Incidence rates of adenosquamous carcinoma and of other and unspecified carcinoma appear to have fallen by about 50% since the early 1990s.

The glandular cancers now comprise a quarter of all cervical cancers, whereas in 1991 they accounted for 5–10% of cervical cancers. The failure to reduce the incidence of adenocarcinoma is usually attributed to difficulties in sampling, less effective identification and more difficult interpretation of abnormal glandular cells.

The incidence of glandular cancers has not changed significantly since the inception of the NCSP. Glandular cancers are less frequent than squamous cancers, which the original NCSP was designed to detect. Improvement of the rate of detection of glandular precursor lesions was one aspect considered in the strategy for renewal of the NCSP, to ensure that Australian women are offered optimal cervical screening.

INCIDENCE AND MORTALITY FOR DIFFERENT AGE GROUPS BETWEEN 1982 AND 2011

Incident cancers decreased over time in each age group from 25–29 years to 85+ years (Figure 1.4). Before the introduction of the NCSP there was a clear second (and higher) peak in the graph of incidence with age in women from 60 years onwards. This peak appears to have reduced substantially over time, possibly because of increased uptake of screening by older women in the organised program. There is also some suggestion that this peak has moved to women in their late seventies and eighties.

NOTE: 1. Incidence rate is the number of new cases of cervical cancer per 100,000 women. Source: Australian Cancer Incidence and Mortality (6)
Similarly, reductions in mortality has been recorded over the same period. Figure 1.5 shows the reduction in the number of deaths during the period 1982–2011 and the variation among women of different age groups. The major reduction in mortality occurred after the introduction of the organised approach to cervical screening in 1991, with the greatest absolute reduction in women in their late sixties and early seventies. This effect is most notable in the period 2002–2012, which does not show the small rise in mortality for women around the age of 65–69 years that is apparent in both the 1982–1991 and 1992–2001 periods.

Figure 1.5. Mortality from cervical cancer in women by 5-year age group, 1982–1991, 1992–2001, and 2002–2012

NOTE: 1. Mortality rate is the number of deaths from cervical cancer per 100,000 women. Source: Australian Cancer Incidence and Mortality.

**CE
C
R
VELICAL CANCER IN AUSTRALIA**

45
Cervical cancer screening across specific groups

Since 1991 cervical screening, using a Pap smear every 2 years, has been recommended for all Australian women aged 20–69 years.

GENERAL POPULATION

Around 6 in 10 women participate in the NCSP every 2 years. In 2012–2013 (and in preliminary data available for 2013–2014), more than 3.8 million women participated in the NCSP. This was 58% of women aged 20–69 years, and is similar to the 2010–2011 and 2011–2012 periods, for which participation rates were 57% and 58%, respectively. Women under 25 years have the lowest participation rates. Figure 1.6 shows the participation in the NCSP by age over intervals of 2, 3 and 5 years. Five-year participation is more than 80%.

Figure 1.6. Participation of women aged 20–69 years, by age, over 2 years (2012–2013), 3 years (2011–2013), and 5 years (2009–2013)

NOTE:

1. Participation rate is the number of women screened as a percentage of the resident population (Australian Bureau of Statistics estimates) adjusted to include only women with an intact cervix (using hysterectomy fractions derived from the National Hospital Mortality Database).

Source: AIHW analysis of state and territory cervical screening register data|^1|
REMOTENESS AND SOCIOECONOMIC STATUS

Participation differed little across remoteness areas. ASRs range between 58% and 60% in all areas except for very remote areas (55%). However, there is a clear trend of increasing participation with increasing socioeconomic status of residence, from 52% in areas of lowest socioeconomic status to 64% in areas of highest socioeconomic status.

Figure 1.7. Participation of women aged 20–69, by remoteness area and by socioeconomic status, 2012–2013

NOTE: 1. Participation rate is the number of women screened as a percentage of the resident population (Australian Bureau of Statistics estimates), adjusted to include only women with an intact cervix (using hysterectomy fractions derived from the National Hospital Morbidity Database), age-standardised to the Australian population at 30 June 2001. Source: AIHW analysis of state and territory cervical screening register data"
1.
CERVICAL SCREENING GUIDELINES
CERVICAL CANCER IN AUSTRALIA

Cervical cancer across specific groups

WOMEN WHO DO NOT PARTICIPATE AS RECOMMENDED IN THE NCSP
Failure to participate in the NCSP is related to increased incidence of cervical cancer.
Fifty per cent of cervical cancers occur in women who have never been screened and a further 28% occur in women who do not screen regularly or are lapsed screening participants. This finding suggests that cancer incidence patterns do follow rates of participation in the NCSP.[6]

SOCIOECONOMIC STATUS
Figure 1.8 shows the incidence of cervical cancer in women according to socioeconomic status in 2006–2009. This would appear to reflect the different participation rates related to socioeconomic status as shown in Figure 1.7. In particular, the incidence of cervical cancer was lowest for women living in areas of highest socioeconomic status (ASR 7.4 new cases per 100,000 women) and it was this group that has the highest participation rate. The four lowest socioeconomic groups had similar rates, with an ASR of 9–10 new cases per 100,000 women.

Figure 1.8. Incidence of cervical cancer in women aged 20–69, by socioeconomic status, 2006–2009

![Incidence of cervical cancer in women aged 20–69, by socioeconomic status, 2006–2009](image)

NOTE: 1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.
Source: AIHW analysis of the Australian Cancer Database 2011[5]

Figure 1.9 shows mortality from cervical cancer in women according to socioeconomic status in 2007–2011. This would again appear to reflect the different participation rates related to socioeconomic status as shown in Figure 1.7, and incidence shown in Figure 1.8. Mortality from cervical cancer was lowest for women living in areas of highest socioeconomic status (ASR 1.2 deaths per 100,000 women), broadly increased with decreasing socioeconomic status, and was highest in the lowest socioeconomic group (ASR 2.8 deaths per 100,000 women). The variation of mortality with socioeconomic status was somewhat greater than for incidence, however, suggesting that treatment factors and variations in survival also play a role in the difference.
1. CERVICAL SCREENING
GUIDELINES

CERVICAL CANCER IN AUSTRALIA

Figure 1.9. Mortality from cervical cancer in women aged 20–69 years, by socioeconomic status, 2007–2011

NOTE: 1. Mortality rate is the number of deaths from cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001. Source: AIHW National Mortality Database.

Source: AIHW analysis of the National Mortality Database [7]

GEOGRAPHICAL VARIATION

The incidence and mortality of cervical cancer shows some geographical variation within Australia. This is most noticeable when comparing data from major cities, and inner and outer regional areas, with remote and very remote areas, as shown in Figure 1.10.

During the period 2005–2009 major cities and inner and outer regional areas had incidence rates of 9.0 and 9.3 new cases per 100,000 women, respectively. The incidence in remote and very remote areas was significantly higher, at 12.7 new cases per 100,000 women.[2]

Figure 1.10. Incidence of cervical cancer in women aged 20–69, by remoteness area, 2005–2009

NOTE: 1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.

Source: AIHW analysis of the AIHW Australian Cancer Database 2011[2]
Figure 1.11 shows that mortality was similar in major cities (1.8 deaths per 100,000 women) and inner and outer regional areas (2.2 deaths per 100,000 women), but mortality in remote and very remote areas was significantly higher (3.4 deaths per 100,000 women). A higher proportion of Aboriginal and Torres Strait Islander women live in remote and very remote areas, and Aboriginal and Torres Strait Islander women experience higher incidence and mortality from cervical cancer.\(^2\)

Aboriginal and Torres Strait Islander women

Indigenous status has not been recorded in cancer and mortality registers by all jurisdictions for all time periods. Data from those jurisdictions with adequate reporting of cervical cancer status show a significantly higher incidence among Aboriginal and Torres Strait Islander women during 2005–2009, with an ASR of 19.5 new cases per 100,000 women, compared with 8.7 among non-Aboriginal and Torres Strait Islander women (Figure 1.12). Similarly, available data show a significantly higher mortality rate among Aboriginal and Torres Strait Islander women during 2008–2012, at 7.7 deaths per 100,000 women, compared with 1.9 deaths per 100,000 women among non-Indigenous women (Figure 1.13).
NOTES:

1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.

2. Only data from New South Wales, Queensland, Western Australia and the Northern Territory only were considered to have adequate levels of Indigenous identification in cancer registration data.

Source: AIHW analysis of the Australian Cancer Database 2011

NOTES:

1. Mortality rate is the number of deaths from cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.

2. Only data from New South Wales, Queensland, Western Australia, South Australia and the Northern Territory were considered to have adequate levels of Indigenous identification in cancer mortality data.

Source: AIHW analysis of the National Mortality Database

NCSP participation rates for Aboriginal and Torres Strait Islander women are not available because information on Indigenous status is not collected on pathology forms in all jurisdictions. However, there is evidence that Aboriginal and Torres Strait Islander women are under-screened, and that this contributes to their higher cervical cancer incidence and mortality.
Cervical cancer control in Australia: now and in the future

Figure 1.14. Incidence of cervical cancer observed for 1982–2007 and projected to 2020

NOTE: 1. Incidence rate is the number of new cases of cervical cancer per 100,000 women, age-standardised to the Australian population at 30 June 2001.
Source: AIHW analysis of the AIHW Australian Cancer Database 2007.[13]

SURVIVAL

Improvements in speed of referral, investigation, diagnosis, staging of disease, treatment efficacy and availability, subspecialist care, multidisciplinary team management and patient quality of life, have translated into a modest increase in 5-year relative survival for women diagnosed with cervical cancer. Between time periods 1982–1987 and 2006–2010, the 5-year relative survival (the ratio of observed survival to expected survival) for cervical cancer rose substantially, from 68% in 1982–1987 to 71% in 1988–1993, and to 71.9% in 2007–2011.[11][12]

INCIDENCE

In the absence of any change to the screening program, and assuming that the ASR of 6.7 new cases per 100,000 women will remain constant, the actual number of cases of cervical cancer will rise slowly over the next few years due to population growth and ageing (Figure 1.14). However these projections are not forecasts; they do not allow for future changes in methods of cancer detection or prevention, nor the likely impact of vaccination against human papillomavirus (HPV) in reducing the incidence of cervical cancer in young women.

The future of cervical cancer control is in prevention of the disease. Australia has a two-pronged approach: the primary prevention strategy is school-based HPV vaccination, and the secondary prevention strategy is HPV screening (replacing the Pap smear) commencing in December 2017.
NATIONAL HPV VACCINATION PROGRAM

The National HPV Vaccination Program commenced for girls in 2007 and for boys in 2013, using a quadrivalent vaccine against HPV types 6, 11, 16 and 18 (Gardasil). This vaccine is effective in preventing infection with the oncogenic HPV types (16 and 18) that cause 70–80% of cervical cancer in Australia.

The National HPV Vaccination Program Register has reported an initial vaccination uptake of 73% for the full course of three doses among eligible girls aged 12–13 years nationally. Reductions in the prevalence of infections with vaccine-included oncogenic HPV types, anogenital warts and histologically confirmed HSIL have already been documented in young women, including a reduction in vaccine-included type infections in unvaccinated young women\[^7\]\[^8\]\[^9\]\[^10\]\[^11\].

A next-generation 9-valent vaccine, with the capacity to prevent up to 90% of cervical cancers in effectively vaccinated females, is expected to be considered for inclusion in the National HPV Vaccination Program. However, this is not expected to have an immediate effect on cervical screening because the new vaccine would be delivered to girls aged 12–13 years, who would not be eligible for screening for a number of years.

RENEWAL OF THE NATIONAL CERVICAL SCREENING PROGRAM

Renewal of the NCSP commenced in late 2011, to ensure the continuing success of the program and to ensure that that all Australian women – HPV vaccinated and unvaccinated – have access to a cervical screening program that is based on current evidence and best practice.

Factors stimulating the renewal include:

- a plateau in the incidence of cervical squamous cell carcinoma since 2002
- lack of significant reduction in glandular carcinomas since the introduction of the NCSP
- new knowledge about the natural history of cervical cancer (see Chapter 2. The rationale for primary HPV testing)
- new evidence about the optimal screening age range and interval
- new tests, such as liquid based cytology (LBC) and HPV testing
- the National Human Papillomavirus Vaccination Program, which commenced in 2007 for girls and in 2013 for boys.

After a rigorous and transparent process involving an external evidence review\[^12\]\[^13\] and economic modelling\[^14\]\[^15\], the Australian Medical Services Advisory Committee (MSAC) released its recommendations in April 2014.

In December 2017 Australia is changing to a renewed NCSP based on 5-yearly cervical screening using a primary HPV test with partial genotyping and reflex LBC triage, for women aged 25–69 years, with exit testing up to age 74 years. Invitations and reminders will be sent to women, and a provision has been made for self-collection of a HPV sample for an under-screened or never-screened woman. The modelled evaluation performed for the MSAC evaluation of the renewed program estimated that the new program will deliver a further 15–22% reduction in incidence and mortality from cervical cancer in Australian women\[^16\].

Subsequent modelling, taking into account post-colposcopy management as recommended in these guidelines, has predicted reductions of 31–36% in cervical cancer incidence and mortality in unvaccinated cohorts, and reductions of 24–29% in cohorts offered vaccination (see Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations).
CERVICAL SCREENING
GUIDELINES
CERVICAL CANCER IN AUSTRALIA

References

2. THE RATIONALE FOR PRIMARY HPV SCREENING

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
Professor Karen Canfell – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

NOTE ON SOURCES:
1. Although updates and new inclusions have been incorporated, substantial sections of this chapter have been directly sourced, with grateful acknowledgement, from the following publications:
2. Cervical cancer. Chapter in: National Cancer Prevention Policy, Cancer Council Australia. [Chapter revised in March/April 2012 in consultation with Professor Karen Canfell (now Director Research Cancer Council NSW). Kristine Macartney (Deputy Director of Government Programs, National Centre for Immunisation Research & Surveillance) provided advice about HPV immunisation. The chapter was externally reviewed in July 2012 by Professor Ian Frazer, Professor Ian Hammond and Associate Professor Marion Saville].
HPV infection

Over 100 different types of human papillomavirus (HPV) have been identified and there are more than 40 anogenital HPV types, 15 of which are classified as ‘high risk’ or oncogenic.1,2

HPV infections can induce the development of either benign or malignant lesions. Benign lesions (including non-genital and anogenital skin warts, oral and laryngeal papillomas and anogenital mucosal condylomata) are caused by HPV types designated ‘low risk’ (notably HPV 6 and 11, which cause anogenital warts).3 Persistent infection with oncogenic HPV types is generally subclinical, but can result in the development of a range of anogenital tumours including cancers of the cervix, anus, penis, vulva and vagina.3 HPV infection is also associated with squamous cell carcinomas of the head and neck, particularly oropharyngeal cancers.4

Anogenital HPV infections are transmitted mainly by skin-to-skin or mucosa-to-mucosa contact.5 Penetrative sexual intercourse is not strictly necessary for transmission and HPV can be transferred to the cervix from original infection at the introitus.6 Therefore, genital skin-to-skin contact, vaginal sex, oral sex, and anal sex represent types of sexual activity that may facilitate the person-to-person transmission of anogenital types of HPV.

Prior to the implementation of HPV vaccination, cervical HPV infection was common in sexually active women. A study of pre-vaccination cervical HPV prevalence found multiple infections were common in Australian women, with a wide range of HPV types detected (HPV 16 being the most common), and incidence peaking in the years following the start of sexual activity.7 International data show prevalence is high even in young women who are with their first partner and are monogamous, with HPV infection rates of 30% within 1 year of becoming sexually active and 48% within 3 years.8 HPV prevalence peaks soon after the average age of first sexual intercourse. In Australia the median age of sexual debut is 17 years for females born from 1965 onwards.8 Prevalence among women aged over 30 years is much lower than among younger women.10 Most infections are cleared by the immune system within 1–2 years.11
HPV, cervical intraepithelial neoplasia, and cancer of the cervix

There is overwhelming evidence that HPV infection is necessary for development of cancer of the cervix.

The International Agency for Research on Cancer has classified certain HPV types as Group 1 carcinogens (agents for which there is sufficient evidence that it is carcinogenic to humans). \[^{12}\]

While HPV infection is necessary for the development of cervical cancer, it is certainly not sufficient. \[^{14}\] Worldwide, it has been estimated that pre-vaccination, there were about 100 million adult women infected with oncogenic HPV types. \[^{14}\] This compares with approximately 528,000 new cases of cervical cancer worldwide each year. \[^{13}\] However, the risk of developing cancer increases significantly with persistent HPV infection. \[^{15}\]

Women with persistent infections, especially with HPV 16, are at significantly higher risk of cervical cancer and its immediate precursor lesion, cervical intraepithelial neoplasia (CIN) grade 3 (CIN3). \[^{16}\][\(^{17}\)[\(^{18}\)] However, although a majority of women are infected with HPV within a few years of sexual debut, incidence of cervical cancer peaks at about age 45 years, \[^{19}\] which suggests that progression from persistent infection to invasive cervical cancer is generally slow. More than 70% of cervical squamous cell carcinomas and about 78% of cervical adenocarcinomas are caused by oncogenic HPV types 16 and 18. \[^{20}\] HPV 16 is the most carcinogenic, accounting for about 55–60% of cervical cancers, while HPV 18 accounts for a further 10–15% of cervical cancers. \[^{21}\][\(^{22}\)]

The four major steps in cervical cancer development are HPV infection/acquisition, viral persistence (versus clearance), progression to cervical pre-cancer, and invasion. \[^{22}\] The natural history of HPV and CIN is summarised in Figure 2.1. It has been estimated that persistent HPV infections and pre-cancer are established, typically within 5–10 years, from less than 10% of new infections. \[^{23}\] However invasive cervical cancer arises only rarely, in a small proportion of women with pre-cancer. If invasive cancer arises, this generally occurs over many years – often decades – with the peak risk occurring after about age 35–55 years. \[^{22}\]

Low-grade squamous intraepithelial lesions (LSIL) are manifestations of acute HPV infection with any type (oncogenic types or other types such as 6, 11), rather than cancer precursors, \[^{23}\] and most will resolve spontaneously within 12 months. \[^{24}\] Some high-grade squamous intraepithelial lesions (HSIL, CIN2) will regress over time, but these lesions are associated with a higher risk of progression compared with LSIL. At the molecular level, pre-cancerous lesions occur when oncogenic HPV is not cleared, infects immature cells and prevents maturation and differentiation, resulting in the replication of immature cells and the accrual of genetic changes that can lead to cervical cancer (Figure 2.1). \[^{25}\] Lesions histologically classified as CIN2 represent a heterogeneous mix of low-grade and high-grade abnormalities at the molecular level. Clinically, however, lesions classified as CIN2 or above (CIN2+) are often termed ‘high grade’ or ‘precancerous’ and are treated.

In women with oncogenic HPV infection, current cigarette smoking significantly increases the risk of squamous cell carcinoma, but not of adenocarcinoma. \[^{26}\] Other co-factors that increase the risk of progression to cervical cancer in women who have a persistent oncogenic HPV infection includes multiparity (more than five full-term pregnancies), \[^{27}\] early age at first full-term pregnancy, \[^{27}\] and the use of oral contraceptives. \[^{24}\] Immune deficiency (e.g. acquired by HIV infection) contributes significantly to persisting HPV infection and cervical cancer risk. \[^{29}\]
The rationale for primary HPV screening

Figure 2.1. HPV to cervical cancer

- **Uninfected** to **HPV infection**
- **HPV infection** to **Clearance**
- **HPV infection** to **HPV INFECTION (low grade abnormality)**
- **HPV INFECTION (low grade abnormality)** to **Persistence & Progression**
- **Persistence & Progression** to **PRE-CANCER (high grade abnormality, CIN2/3 or AIS)**
- **PRE-CANCER (high grade abnormality, CIN2/3 or AIS)** to **Invasion in small proportion of women**
- **Invasion in small proportion of women** to **CERVICAL CANCER**

Acknowledgment: Adapted from Schiffman M, 2005.
2. CERVICAL SCREENING GUIDELINES

THE RATIONALE FOR PRIMARY HPV SCREENING

HPV vaccination

Since 2007, prophylactic vaccination against HPV in pre-adolescent females has been introduced in most developed countries, supported by modelled evaluations of the cost-effectiveness of this intervention.[31] Two first-generation vaccines are available: the quadrivalent vaccine (Gardasil, CSL/Merck) and the bivalent vaccine (Cervarix, GSK). These have been shown to be effective in preventing persistent infection and histologically confirmed HSIL (CIN2/3) in females naïve to HPV vaccine types[32][33] and at preventing persistent infection, external genital lesions and anal intraepithelial neoplasia in males.[34]

First-generation HPV vaccines protect against oncogenic HPV types 16 and 18, which are together responsible for approximately 70% of invasive cervical cancers.[2] The quadrivalent vaccine also protects against oncogenic HPV types 6 and 11, which cause more than 90% of anogenital warts. As nearly 80% of adenocarcinomas are associated with the HPV types 16/18,[35] prophylactic HPV vaccination is also expected to be effective in preventing these cancers.[36]

Large-scale studies have shown the HPV vaccines to be safe and well tolerated. Gardasil, the quadrivalent vaccine distributed via the National Immunisation Program, has been assessed as safe and effective by the Australian Therapeutic Goods Administration, the US Food and Drug Administration and the European Medicines Agency. For further information about HPV vaccine safety and efficacy, as well as dosage and administration, please refer to the Australian Immunisation Handbook.

For maximum efficacy, prophylactic vaccines need to be administered to individuals prior to HPV exposure.[14] Current vaccines do not have a therapeutic effect in those already infected with HPV. It is recommended that HPV vaccines be provided before sexual activity commences. In Australia, the National Immunisation Program targets ongoing vaccination towards adolescent/pre-adolescent girls, aged 11–13 years. Young males were included on the National HPV Vaccination Program from 2013.[21] Australia-specific modelling has suggested this will increase the level of ‘herd immunity’ protection to females.[38]

In late 2014, the US Food and Drug Administration approved a second-generation 9-valent vaccine, which targets the quadrivalent oncogenic HPV types and five additional oncogenic HPV types (31, 33, 45, 52, and 58). Together, oncogenic HPV types included in the 9-valent vaccine are found in approximately 90% of cervical cancers globally.[39] Compared with the quadrivalent vaccine, the 9-valent vaccine has been shown to be 97% effective for prevention of high-grade cervical, vulvar, and vaginal disease caused by types 31, 33, 45, 52, and 58 in individuals naïve for these types, and to be associated with non-inferior seroconversion for the oncogenic HPV types included in the current quadrivalent vaccine: 6, 11, 16, and 18.[40] The Australian Pharmaceutical Benefits Advisory Committee will evaluate the 9-valent vaccine for inclusion in the National Immunisation Program. As of early 2016 this had not yet occurred.

Impact of HPV vaccination in Australia

Australia was the first country to initiate a national public vaccination program, which began in 2007. Female vaccination uptake is approximately 71–72% for three-dose coverage in girls aged 12–13 years, and catch-up in women aged 18–26 years (conducted from 2007–2009) achieved coverage rates of approximately 30–50%.[13][14] From 2013, males aged 12–13 years have also been vaccinated at school with a 2-year catch-up to Year 9 (age approximately 15 years). Via herd immunity, male vaccination will also provide incremental benefits to females, and is expected to lead to further reductions in rates of infection with vaccine-included oncogenic HPV types and high-grade cervical abnormalities in females.[36]

Several factors have come together to achieve a more rapid impact of vaccination on cervical screening in Australia than in many other countries. These include the early introduction of HPV vaccination, the extended catch-up to age 26 years, the early age of screening commencement at 18–20 years, with the consequent overlap of vaccinated and screened populations from the inception of the vaccination program, and the relatively high coverage rates for vaccination and cervical screening.

After the introduction of vaccination, Australia experienced rapid falls in rates of infections with vaccine-included oncogenic HPV types, in anogenital warts and in
Impact of vaccination on the starting age for cervical screening

Even in completely unvaccinated populations, rates of invasive cervical cancer are low in women younger than 25 years42 (see also Cervical Cancer in Australia). A substantial body of evidence has found that cervical screening in this age group has little or no impact on the risk of developing invasive cancer before age 30 years.47 Almost all countries with organised programs recommend that cervical screening commences at age 25 or 30 years and the International Agency for Research on Cancer (IARC) recommends regular cervical screening begin at the age of 25.114 This starting age achieves the best balance of benefits and harms for cervical screening, as detailed in the report of effectiveness modelling and economic evaluation116 undertaken during renewal of the NCSP.150

The evaluation undertaken for renewal of the NCSP considered a range of screening strategies starting at age 25 years.116 The evaluation predicted that, compared with pre-renewal NCSP based on cytology screening in sexually active women starting at age 18–20 years, 5-yearly HPV screening starting at age 25 will be associated with reductions in cervical cancer incidence and mortality rates of at least 15%; this reduction is predicted even if the population had never been offered HPV vaccination. Subsequent modelling, taking into account post-colposcopy management as recommended in these guidelines, has predicted reductions of 31–36% in cervical cancer incidence and mortality in unvaccinated cohorts, and reductions of 24–29% in cohorts offered vaccination (see Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations).

In the post-vaccination era the risk of cervical cancer in women aged 25 years or less has been reduced even further.116 In Australia, the prevalence of infections with vaccine-included oncogenic HPV types decreased by 78% among women aged 18–24 years between 2005–2007 (pre-vaccination era) to 2010–2012.114 This substantial reduction occurred within a few years after vaccination was introduced. Furthermore, the impact of the vaccination program has not been confined to those who are individually vaccinated. Even prior to the implementation of male vaccination, females showed herd immunity due to the vaccination of other females in the community. The effect has been documented as a fall in the prevalence of infections with vaccine-included oncogenic HPV types in unvaccinated women aged 18–24 years that occurred by 2012; the effect of herd immunity is expected to be even further increased following the implementation of male vaccination in 2013. As detailed above, a dramatic fall in histologically confirmed HSIL (of over 50%) has also been documented in women under 25 years of age in Australia.114

Therefore, several factors have combined to support a starting age of 25 years in the renewed NCSP, including:

- the relatively lower rates of cervical cancer in women less than 25 years of age
- the lack of evidence for the effectiveness of cervical screening in this age group
- the impact of HPV vaccination on further substantially lowering the risks for both vaccinated and unvaccinated young women.
HPV DNA testing in cervical screening is more sensitive than cytology and detects high-grade lesions earlier, thus preventing more cervical cancers.\(^5\)\(^6\)\(^7\) Screening using HPV testing has the potential to improve identification of adenocarcinoma and its precursors.\(^8\)\(^9\)\(^10\) A large body of evidence, including data from randomised trials in developed countries, has shown HPV testing in primary screening is superior to cytology.\(^11\)\(^12\)\(^13\) Analysis of four European randomised controlled trials found that, compared with cytology, HPV-based screening provided greater protection against invasive cervical cancers.\(^5\)

Using the HPV test as a primary screening tool allows for development of population-based screening recommendations based on individual risk assessment rather than vaccination status, which will change over time as vaccinated cohorts reach screening age.\(^5\) Given oncogenic HPV types 16 and 18 account for the greatest proportion of infections causing cervical cancer, screening tests with partial genotyping for oncogenic HPV types 16/18 are expected to improve risk stratification of women with a positive oncogenic HPV test result in cervical screening programs.\(^2\)

In the renewed NCSP, HPV testing at 5-year intervals from age 25 years has been recommended and adopted as the preferred pathway for screening in Australia.\(^9\) The review of strategy and policy undertaken for renewal of the NCSP identified options for HPV screening in Australia that were predicted to result in life–year savings, compared with current practice.\(^9\) The greatest gains in effectiveness were associated with strategies based on primary HPV testing with partial genotyping for HPV 16/18, in which women with these HPV types are referred directly for diagnostic evaluation.\(^9\)

An Australian trial of HPV screening with partial genotyping, Compass, is providing information on resource use and outcomes of the renewed NCSP in both unvaccinated and vaccinated women. This information has informed the development of these guidelines. Conducted in the state of Victoria by the Victorian Cytology Service Ltd and Cancer Council NSW, Compass has two phases: Phase I (the pilot), which recruited 5000 women, and Phase 2 (the main trial) which is recruiting 121,000 women.

2. CERVICAL SCREENING GUIDELINES

THE RATIONALE FOR PRIMARY HPV SCREENING

Primary HPV Screening

Due to the relationship between persistent infection with oncogenic HPV types and the development of cervical cancer, testing for the presence of oncogenic HPV DNA in cervical cell specimens has the potential to identify women at increased risk of developing cervical cancer.

Women in whom oncogenic HPV types are not detected are at very low risk of CIN3 or cancer for at least 5 years.\(^5\)\(^1\)\(^2\)

References

References continued
References continued

2.

THE RATIONALE FOR PRIMARY HPV SCREENING

2.1. CERVICAL SCREENING GUIDELINES

2.1.1. RATIONALE

References continued
3. TERMINOLOGY

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Terminology author(s):
- A/Professor Lyndal Anderson – Co-author
- A/Professor Marion Saville – Co-author
- Professor Gordon Wright – Co-author
- Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

Colposcopy terminology author(s):
- Mr. C. David H. Wrede – Author
- A/Professor Alison Brand – Co-author
- Professor Ian Hammond – Co-author
- Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:
- Introduction
- HPV testing terminology
- Cytology and AMBS 2004 terminology for reporting cervical cytology
- Preparation of cervical screening reports
- Colposcopy terminology
- Histopathology
- Supplement. Sample reports
HPV testing terminology

HPV TESTING

HPV testing refers to testing for oncogenic human papillomavirus (HPV) types. Oncogenic HPV types are defined as those associated with the development of invasive cervical cancer and include HPV 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68. HPV testing can be performed using a range of technologies including DNA PCR, DNA hybridisation, and testing for RNA.

Technologies that are to be used in the National Cervical Screening Program (NCSP) will be required to meet performance standards as determined by the National Pathology Accreditation Advisory Council (NPAAC).

THE ROLE OF PARTIAL GENOTYPING

The risk of having, or developing, cervical intraepithelial neoplasia (CIN) grade 3 or higher (CIN3+) can be stratified based on the results of partial genotyping on an HPV test. Several epidemiological analyses have been performed to inform estimates of the longitudinal risk associated with each HPV type. For example, Khan and colleagues calculated the cumulative incidence rates (CIR) of CIN3+, including cancer, over a 10-year period as follows:

- 17.2% for women with a positive oncogenic HPV test result (type 16)
- 13.6% for women with a positive oncogenic HPV test result (type 18)
- 3% for women with a positive oncogenic HPV test result (not 16/18)
- 0.8% for women in whom oncogenic HPV is not detected.

HPV testing within the NCSP includes partial genotyping for HPV types 16 and 18, as these types are managed differently to other oncogenic HPV types (not 16/18) in the program (see Oncogenic HPV types 16/18 in Chapter 6, Management of oncogenic test results).

Some HPV test platforms provide additional channels for reporting HPV 31, 45 and/or other (not 16/18) oncogenic types, as part of their partial genotyping reporting. Some test platforms report HPV 18 and 45 together. For assays that do not distinguish between oncogenic HPV 18 and 45, a woman in whom type 18/45 is detected should be managed as for women with a positive oncogenic HPV (16/18) test result.

HPV RESULTS

For the purpose of reporting, this guideline recognises the following categories for HPV test results (see Preparation of cervical screening reports):

- HPV 16/18 detected
- oncogenic HPV (not 16/18) detected
- oncogenic HPV not detected.

References

Cytology and explanation of AMBS 2004 terminology for reporting cervical cytology

CYTOLOGY

Background

In 1991, the US National Cancer Institute (NCI) sponsored a multidisciplinary meeting in Bethesda, Maryland to consider Pap smear terminology. Participants including pathologists, cytotechnologists, gynaecologists and primary care health professionals (predominantly from the USA, but also from other countries) agreed on a consistent system for reporting Pap smears: The Bethesda System 1991 (TBS 1991).\[1\]

NHMRC Australian terminology, 1994

As part of preparing the first National Health and Medical Research Council (NHMRC) 1994 guidelines for the management of women with screen-detected abnormalities,\[2\] the Australian working party considered the Bethesda terminology and recommended a range of modifications that resulted in a unique Australian terminology system.

Revisions of The Bethesda System 2001 (TBS 2001) and 2014 (TBS 2014)

There have been few changes in terminology since 2001.\[3,4\] In 2014, a smaller working party of cytopathologists, clinicians and epidemiologists reviewed TBS 2001, resulting in the 2014 update of The Bethesda System (TBS 2014) published in 2015.\[5\] Changes included additional information on cytology at other anatomical sites, adjunctive HPV testing, immunochemical assays such as dual p16 and Ki67 staining, and computer-assisted interpretation of cytology.

Australian Modified Bethesda System (AMBS 2004): current terminology in Australia

Building on the historical NHMRC Australian terminology from 1994, the Australian Modified Bethesda System (AMBS) was introduced in 2004. AMBS 2004:

- incorporated the separation of suspected from confidently predicted low-grade abnormalities
- reflected a modern understanding of the relationship between HPV infection and cervical cancer and its precursors
- was compatible with terminology systems used internationally
- did not mandate distinctions for which there is poor evidence for reproducibility or clinical significance.

There has been no change to the AMBS since 2004 and it remains the current terminology in Australia. Table 3.1 compares AMBS 2004 with TBS 2001 and TBS 2014.
Table 3.1. Comparison of the Australian Modified Bethesda System (AMBS 2004) and The Bethesda System (TBS 2001/2014)

<table>
<thead>
<tr>
<th>AMBS 2004</th>
<th>TBS 2001/2014</th>
<th>Incorporates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Possible low-grade squamous intraepithelial lesion</td>
<td>Atypical squamous cells, undetermined significance (ASC-US)</td>
<td>Nonspecific minor squamous cell changes. Changes that suggest, but fall short of HPV/CN1</td>
</tr>
<tr>
<td>Low-grade squamous intraepithelial lesion</td>
<td>Low-grade squamous intraepithelial lesion</td>
<td>HPV effect, CN1</td>
</tr>
<tr>
<td>Possible high-grade squamous lesion</td>
<td>Atypical squamous cells, possible high-grade lesion (ASC-H)</td>
<td>Changes that suggest, but fall short of, CIN2, CIN3 or SCC</td>
</tr>
<tr>
<td>High-grade squamous intraepithelial lesion</td>
<td>High-grade squamous intraepithelial lesion</td>
<td>CIN2, CIN3</td>
</tr>
<tr>
<td>Squamous cell carcinoma</td>
<td>Squamous cell carcinoma</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>Glandular abnormalities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atypical endocervical cells of undetermined significance</td>
<td>Atypical endocervical cells of undetermined significance</td>
<td>Nonspecific minor cell changes in endocervical cells</td>
</tr>
<tr>
<td>Atypical glandular cells of undetermined significance</td>
<td>Atypical endocervical cells of undetermined significance</td>
<td>Nonspecific minor cell changes in glandular cells</td>
</tr>
<tr>
<td>Possible high-grade glandular lesion</td>
<td>Atypical endocervical cells, possible neoplastic</td>
<td>Changes that suggest, but fall short of, AIS or adenocarcinoma</td>
</tr>
<tr>
<td>Endocervical adenocarcinoma in situ</td>
<td>Endocervical adenocarcinoma in situ</td>
<td>Adenocarcinoma in situ</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Adenocarcinoma</td>
<td>Adenocarcinoma</td>
</tr>
</tbody>
</table>
3.

EXPLANATION OF AMBS 2004 TERMINOLOGY FOR REPORTING CERVICAL CYTOLOGY

Squamous abnormalities

Possible low-grade squamous intraepithelial lesion
The category of possible low-grade squamous intraepithelial lesion (pLSIL) is to be used when the reporting scientist/pathologist observes changes in squamous cells that may represent a low-grade squamous intraepithelial lesion, but the changes are not so clear-cut as to justify a ‘definite’ diagnosis. This category specifically excludes changes that are within the scope of reactive processes.

Low-grade squamous intraepithelial lesion
The low-grade squamous intraepithelial lesion (LSIL) category is the morphological correlate of productive viral infection. It is to be used when the scientist/pathologist observes changes that, pre-AMBS 2004, would have been described as ‘HPV effect’ or ‘CIN1’.

Possible high-grade squamous intraepithelial lesion
The category of ‘possible high-grade squamous intraepithelial lesion’ (pHSIL) is to be used when the reporting scientist/pathologist suspects the presence of a high-grade squamous abnormality, such as CIN2, CIN3 (in the pre-AMBS 2004 system) or squamous cell carcinoma (SCC), but the changes are insufficient to justify a confident cytological prediction of a high-grade lesion.

High-grade squamous intraepithelial lesion
The high-grade squamous intraepithelial lesion (HSIL) category is the morphological correlate of a true preneoplastic change occurring in squamous cells as a result of HPV infection. It is to be used when the scientist/pathologist observes changes that, pre-AMBS 2004, would have been described as CIN2 or CIN3.

If, in addition to the presence of a definite intraepithelial high-grade abnormality, there are features that suggest the presence of an invasive component, this should be noted in the ‘specific diagnosis’ section of the report.

Squamous cell carcinoma
The SCC category is self-explanatory.

GLANDULAR ABNORMALITIES

Atypical endocervical cells of undetermined significance
Atypical glandular cells of undetermined significance

These categories encompass those changes in glandular cells that the reporting scientist/pathologist believes are outside the scope of a definite reactive process.

It has been well documented that productive HPV infection does not exist in glandular cells, and therefore there is no glandular correlate to the low-grade squamous abnormality. Nevertheless, the morphological changes observed in glandular cells encompass a spectrum of changes. These categories should be used when such changes are insufficient to raise the possibility of a neoplasm, such as AIS, but are beyond those accepted as definitely representing a reactive process.

Cells in this category are to be designated as follows:
- atypical glandular cells when the reporting scientist/pathologist is not sure whether the cells are endocervical
- atypical endocervical cells when the reporting scientist/pathologist is confident that the cells are endocervical

Possible high-grade glandular lesion
This category is to be used when the reporting scientist/pathologist suspects the presence of a high-grade glandular abnormality such as possible AIS, possible endocervical adenocarcinoma or possible endometrial adenocarcinoma, but is unable to make a confident prediction.

Endocervical adenocarcinoma in situ
The endocervical AIS category is self-explanatory. The diagnosis is to be used when the reporting scientist/pathologist is confident of the presence of AIS.

Adenocarcinoma
The adenocarcinoma category is self-explanatory. The reporting scientist/pathologist has the option of designating whether they believe the adenocarcinoma is endocervical, endometrial or extraterine in origin.

References
Preparation of cervical screening reports

Examples of cervical screening reports conforming to the requirements of the renewed NCSP are found in the Supplement. Sample reports.

CERVICAL SCREENING RESULT

Reported as low, intermediate or higher risk of significant cervical abnormality, or as unsatisfactory for evaluation, based on both the HPV test and (where indicated) reflex LBC (Table 3.2).

Table 3.2. Reporting of cervical screening result

<table>
<thead>
<tr>
<th>Findings</th>
<th>Reflex LBC</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV test result</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oncogenic HPV not detected</td>
<td>N/A</td>
<td>Low risk for significant cervical abnormality</td>
</tr>
<tr>
<td>Oncogenic HPV (not 16/18)</td>
<td>Negative or pLSIL/LSIL</td>
<td>Intermediate risk for significant cervical abnormality</td>
</tr>
<tr>
<td>HPV 16/18</td>
<td>Any of the following: Unsatisfactory Negative pLSIL/LSIL pHSIL/HSIL+ Any glandular abnormality</td>
<td>Higher risk for significant cervical abnormality</td>
</tr>
<tr>
<td>Oncogenic HPV (not 16/18)</td>
<td>pHSIL/HSIL+ Any glandular abnormality</td>
<td>Higher risk for significant cervical abnormality</td>
</tr>
<tr>
<td>Oncogenic HPV (any type) persisting at 12 month repeat following initial oncogenic HPV (not 16/18)</td>
<td>Any of the following: Unsatisfactory Negative pLSIL/LSIL pHSIL/HSIL+ Any glandular abnormality</td>
<td>Higher risk for significant cervical abnormality</td>
</tr>
<tr>
<td>Test not completed for technical reasons</td>
<td>N/A</td>
<td>Unsatisfactory for evaluation</td>
</tr>
<tr>
<td>Oncogenic HPV (not 16/18)</td>
<td>Unsatisfactory</td>
<td>Unsatisfactory for evaluation</td>
</tr>
</tbody>
</table>

LBC: liquid-based cytology
HSIL+: HSIL or higher-grade abnormality
SPECIMEN TYPE
- Indicate sample medium.
- Indicate method of collection:
 - practitioner-collected
 - Indicate that the specimen is cervical in origin.
 - self-collected.

TEST RESULT(S)

HPV test
- Indicate the test method used.
- Indicate the test result:
 - HPV 16/18 detected. (For test platforms that do not distinguish between HPV 18 and 45, use this category to report HPV 18/45.)
 - oncogenic HPV (not 16/18) detected. (For test platforms that separately identify 45,31,33 or other oncogenic types (not 16/18), include any such types in this category.)
 - oncogenic HPV not detected
 - unsatisfactory.

LBC results
- Indicate method of analysis:
 - image assisted
 - manually screened.
- Report the epithelial cell findings using AMBS terminology.
- Include a statement on the presence or absence of an endocervical component.
- Note the presence of organisms when identified:
 - *Trichomonas vaginalis*
 - fungal organisms morphologically consistent with *Candida* spp
 - shift in flora suggestive of bacterial vaginosis
 - bacteria morphologically consistent with *Actinomyces* spp
 - cellular changes consistent with herpes simplex virus.
- Note the presence of other non-neoplastic findings when identified (optional):
 - reactive cellular changes associated with:
 - inflammation and repair
 - radiation
 - intrauterine contraceptive device
 - glandular cells after hysterectomy
 - atrophy.

Recommendation
Concise management recommendations, as set out in these guidelines, should be included in the report.

The recommendation must take account of the woman’s screening history as recorded with the National Cancer Screening Register.

The management recommendations should align with the cervical screening result as follows:

<table>
<thead>
<tr>
<th>Cervical screening result</th>
<th>Rescreen in 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low risk of significant cervical abnormality</td>
<td>Rescreen in 5 years</td>
</tr>
<tr>
<td>Intermediate risk of significant cervical abnormality</td>
<td>Repeat HPV test in 12 months</td>
</tr>
<tr>
<td>Higher risk of significant cervical abnormality</td>
<td>Refer for colposcopic assessment</td>
</tr>
<tr>
<td>Unsatisfactory</td>
<td>Retest in 6 weeks[^1]</td>
</tr>
</tbody>
</table>

[^1]: In cases where the HPV test has been performed and reflex LBC is indicated but cannot be performed, the laboratory should not repeat the HPV test on receipt of the repeat sample, but should proceed directly to LBC and then issue a combined report taking account of both tests.
3. CERVICAL SCREENING GUIDELINES

TERMINOLOGY

Preparation of stand-alone LBC reports

LBC will be requested without an HPV test in the following circumstances:
- at the time of colposcopy (when indicated)
- where reflex LBC has been reported as ‘Unsatisfactory’ following the detection of oncogenic HPV (not 16/18)
- following the detection of Oncogenic HPV (not 16/18) in a self-collected sample.

FOLLOWING UNSATISFACTORY LBC
Where a woman has a positive oncogenic HPV (not 16/18) test result and the reflex LBC was unsatisfactory, she should have a further cervical sample taken for LBC in 6 weeks. The repeat cervical sample should not be tested for HPV. The laboratory should undertake LBC and prepare a cervical screening report (see Preparation of cervical screening reports), combining the results of the original HPV test and the repeat LBC. It is anticipated that the support of the National Cancer Screening Register will be critical in this circumstance.

Reporting LBC at the time of colposcopy
LBC on samples taken at the time of colposcopy is not considered a screening test, but rather as part of the assessment process. Accordingly, an over-arching cervical screening report incorporating a risk statement is not required or appropriate in this setting.
- Indicate sample medium.
- Indicate method of analysis:
 - image assisted
 - manually screened.
- Include a statement on the presence or absence of an endocervical component.
- Note the presence of organisms when identified:
 - Trichomonas vaginalis
 - fungal organisms morphologically consistent with Candida spp
 - shift in flora suggestive of bacterial vaginosis
 - bacteria morphologically consistent with Actinomyces spp
 - cellular changes consistent with herpes simplex virus.
- Note the presence of other non-neoplastic findings when identified (optional):
 - reactive cellular changes associated with:
 - inflammation and repair
 - radiation
 - intrauterine contraceptive device
 - glandular cells after hysterectomy
 - atrophy.
- Document that the woman is under gynaecological management and therefore a recommendation is not provided.

FOLLOWING SELF-COLLECTION
Where a woman has a positive oncogenic HPV (not 16/18) test result on a self-collected sample she should have an LBC sample taken by her health care professional. The LBC specimen should not be tested for HPV. The laboratory should undertake LBC and prepare a cervical screening report (see Preparation of cervical screening reports), combining the results of the original HPV test result and the LBC. It is anticipated that the support of the National Cancer Screening Register will be critical in this circumstance.
Colposcopy terminology

2011 INTERNATIONAL FEDERATION FOR CERVICAL PATHOLOGY AND COLPOSCOPY (IFCPC) NOMENCLATURE

The terminology surrounding the clinical reporting of colposcopic examinations has continued to evolve, reflecting the improved understanding of cervical oncogenesis and the normal and abnormal appearances of the cervix. It is timely to review the current terminology used in Australia and align it to internationally accepted standards.

In Australia, the current commonly used nomenclature is the terminology recommended by the International Federation for Cervical Pathology and Colposcopy (IFCPC) in 2002.[1] In 2008, IFCPC formed a nomenclature committee to review the previous IFCPC terminologies (1975, 1990 and 2002) and publications that critically analysed each colposcopic sign, aiming to create an evidence-based terminology. The committee, chaired by Jacob Bornstein, was composed of 13 colposcopists from different countries and one pathologist from Australia. After an exhaustive and transparent process the final terminology was reviewed and approved by all committee members, the IFCPC board and the IFCPC general assembly held at the World Congress in Rio de Janeiro in July 2011.[2]

As the representative body of the national societies for colposcopy and cervical pathology, the IFCPC recommended that the 2011 terminology replace all other terminologies and be implemented without delay for diagnosis, treatment and research. It is recommended that the 2011 IFCPC terminology[2][3] (see the following section) should be used in Australia and replace other terminology.

PRACTICE POINT

REC7.1: New colposcopy terminology

The new terminology adopted by the IFCPC in 2011 should be incorporated into Australian practice.

Summary of IFCPC colposcopic terminology of the cervix[2][3]

GENERAL ASSESSMENT

THE COLPOSCOPIST SHOULD ASSESS AND RECORD THE FOLLOWING:

- adequate/inadequate: records whether the cervix has been visualised or not and includes the reason if inadequate (e.g. vaginal stenosis, cervix obscured by inflammation, bleeding, scarring)
- squamocolumnar junction visibility: this refers to the internal margin of the TZ that is either completely visible, partially visible, or not visible
- TZ should be classified as Types 1, 2, 3 according to the visibility of all or part of the upper limit of the squamocolumnar junction:
 - Type 1 – the whole TZ including all the upper limit is ectocervical
 - Type 2 – the upper limit of the TZ is partly or wholly visible in the canal and is completely visible around 360 degrees
 - Type 3 – part or the entire upper limit of the TZ cannot be seen in the canal. In Type 3 TZ the outer limit may be visible on the ectocervix, in the canal or also not visible (Figure 7.1).
NORMAL COLPOSCOPIC FINDINGS

The colposcopist should assess the following:

- Identify the outer limit of the original squamo-columnar junction.
- Identify the columnar epithelium, and upper limit of the TZ.
- Look for and note the following normal findings: ectopy, metaplastic squamous epithelium (mature or immature), nabothian cysts, crypt (gland) openings, deciduosis in pregnancy or atrophy.

Abnormal colposcopic findings (after application of acetic acid)

Aceto-white changes:

- Minor (Grade 1)
 - thin aceto-white epithelium; irregular geographic border
 - fine mosaic, fine punctation
- Major (Grade 2)
 - dense aceto-white epithelium, rapid appearance of aceto-whitening, cuffed crypt (gland) openings
 - coarse mosaic, coarse punctuation, sharp border, inner border sign, ridge sign

Suspicious for invasion

Atypical vessels

- additional signs (suspicious for invasion): fragile vessels, irregular surface, exophytic lesion, necrosis, ulceration (necrotic), tumour/gross neoplasm suspicious for invasion

Lugol’s staining (Schiller’s test) if performed:

- stained/non-stained

Location of the lesion:

- Is this inside or outside the TZ?
- location of the lesion by clock position
3. Cervical Screening Guidelines

Terminology

Size of the lesion:
- number of cervical quadrants the lesion covers
- size of the lesion (as percentage of cervix)

Miscellaneous findings
Stenosis (partial or complete), congenital anomaly, post treatment consequences, endometriosis, congenital TZ, condyloma, polyp (ectocervical/endocervical) inflammation.

Excision treatment types
This includes stratification and measurement of treatment excision specimens (Australian modification of IFCPC excision nomenclature).

Excision treatment by whatever mode defined by the length of cervical tissue excised as:

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>< 10 mm</td>
</tr>
<tr>
<td>Type 2</td>
<td>> 10 mm and < 15 mm</td>
</tr>
<tr>
<td>Type 3</td>
<td>> 15 mm</td>
</tr>
</tbody>
</table>

(See Treatment.)

Note: This stratification is modified from that of the IFCPC (2012) because, traditionally in Australia, excision specimens are measured using two diameters (anterior to posterior; 12 to 6 o’clock, and side to side; 3 to 9 o’clock) and length (external os to endocervical margin).

References
Histopathology

BACKGROUND
The histopathological classification of HPV-associated disease of the anogenital tract prior to 2012 was complex. Terminology changed for different sites and variable terms such as condyloma, dysplasia, intraepithelial neoplasia and carcinoma in-situ were employed. This was partly due to development of a number of different interest groups including pathologists, dermatologists and gynaecologists using their own version of terminology for similar lesions.

LAST Standardization Project for HPV-associated lesions
To address this problem and to improve communication between the specialties, the Lower Anogenital Squamous Terminology (LAST) Standardization Project for HPV-Associated Lesions was convened, including five major working groups. The findings were first published in June 2012,[1] with two further publications within the following 12 months in order to reach a broad audience.[2][3]

The LAST Standardization Project working groups recognised a number of general principles:[1]

- HPV-related squamous disease reflects a unified epithelial biology.
- Each cytological or histological sample provides only a statistical representation of the patient’s true biology; the more samples or data points available, the more accurate the assessment of the patient’s true biology.
- The true biology represents the risk for cancer at the current time, and the risk for cancer over time.
- Diagnostic variation can be improved by:
 - aligning the number of diagnostic terms with the number of biologically relevant categories
 - the use of biological markers.

The findings of the LAST project have been widely accepted and adopted by members of the Royal College of Pathologists of Australasia (RCPA) and the World Health Organization (WHO)[4], and have been referenced in the first edition (2013) of the RCPA protocol for structured reporting of cervical carcinoma[5].

Two tiered nomenclature
A two-tiered nomenclature system has been accepted for non-invasive HPV associated squamous proliferations of cervix and lower anogenital tract. The two groups are LSIL and HSIL. These two groups may be further characterised by the applicable intraepithelial neoplasia or –IN subcategory. The nomenclature addresses pre-invasive mucosal lesions and early invasive mucosal lesions.

Low-grade squamous intraepithelial lesion (LSIL)
LSIL is the morphologic expression of acute HPV infection and is characterised by cells with increased nuclear to cytoplasmic ratios and irregular nuclear membranes. Mitoses are limited to the lowermost third of the epithelium and maturation begins in the middle third. Multi-nucleation and perinuclear halos, characteristic of HPV effect, may be seen. LSIL encompasses changes previously called ‘HPV effect’ and CIN1 (pre-AMBS 2004). The LAST terminology does not support the distinction between these two categories because of poor inter-observer agreement, lack of clinical significance and the common underpinning biology. In cases with LSIL morphology, p16 staining should not be performed.

High-grade squamous intraepithelial lesion (HSIL)
HSIL is the morphologic expression of persistent HPV infection that has the potential to progress to invasive carcinoma. It is characterised by mitoses seen at any level of the epithelium, little to no cytoplasmic differentiation in the middle third and upper third, increased nuclear size, and irregular nuclear membranes. Where the pathologist is considering a diagnosis of CIN2, p16 staining should be performed.

The result for p16 is reported as positive if there is strong and diffuse block staining for p16. In squamous epithelia, this is defined as continuous strong nuclear or nuclear plus cytoplasmic, staining of the basal cell layer with extension upward involving at least one-third of the epithelial thickness.[2] The LAST Standardization Project group notes that this height restriction is somewhat arbitrary but adds specificity, and that full-thickness staining or extension into the upper third or upper half is specifically not required to call a specimen positive.[2]

When the p16 stain is negative the lesion is either LSIL or a mimic of HSIL and, accordingly, should not be diagnosed as HSIL. HSIL encompasses lesions previously called ‘CIN2’ and ‘CIN3’. The following subcategories should continue to be used:

- HSIL (CIN2) – used when p16 positive
- HSIL (CIN3).

This practice will enable continued measurement of the prevalence of CIN3 in Australian women during and after transition to the renewed NCSP.
3.

CERVICAL SCREENING

GUIDELINES

TERMINOLOGY

Superficially invasive squamous cell carcinoma (SISCCA)

The term ‘microinvasive carcinoma’ is no longer recommended, and the term ‘superficially invasive squamous cell carcinoma’ (SISCCA) should be used instead. It is recognised that SISCCA has a favourable prognosis.

A report including the finding of SISCCA must include a comment on the presence or otherwise of lymphatic invasion and a comment on the number and size of multifocal carcinomas, once the presence of a single carcinoma is excluded. The International Federation of Gynecology and Obstetrics (FIGO) staging should be based on the highest FIGO stage of an individual focus, rather than adding multiple foci together. [8]

Squamous cell carcinoma (SCC)

Squamous cell carcinoma is an invasive epithelial tumour showing variably differentiated squamous cells. [7] The majority are of large cell keratinizing type, demonstrating sheet-like growth, with surrounding desmoplastic stromal response. Virtually all SCCs are thought to arise from a pre-cancerous intraepithelial lesion (HSIL). [7]

Biomarkers

The LAST group assessed data on p16, Ki-67 (Mib1), ProEx C, L1, HPV 16/18 mRNA, telomerase/TERC, and HPV genotyping. It concluded that p16 was the only biomarker for which there was sufficient evidence to recommend its use for distinguishing between types of mucosal pre-cancerous lesions. Staining for p16 is particularly useful for lesions with inflammation or atrophy, lesions affected by diathermy, and thin lesions.

GLANDULAR PROLIFERATIONS

Adenocarcinoma in-situ (AIS)

‘Adenocarcinoma in situ’ (AIS) is the only currently recommended term in Australasia for glandular mucosal pre-invasive lesions. [9] The term ‘glandular dysplasia’ is not currently used in Australia, but has been used historically and is in use in the United Kingdom (where the synonym is ‘low grade cervical glandular intraepithelial neoplasia’). [10] AIS is an intraepithelial lesion containing malignant-appearing glandular epithelium. Nuclei are hyperchromatic and stratified, mitoses are frequently seen towards the apex of the cell, and apoptotic debris may be seen towards the base of the cell. The use of p16 can be very effective in distinguishing AIS from mimics including tubular metaplasia following previous surgical treatment. [8]

Invasive adenocarcinoma of cervix

Adenocarcinoma of cervix is an invasive epithelial tumour showing glandular differentiation. [7] There is significant morphological overlap with adenocarcinoma in situ. However, clues to the invasive nature of the lesion include a desmoplastic stromal response, small angulated claw-like glands branching from the areas of AIS and complex architectural proliferations such as solid, papillary cribriform and labyrinthine growth patterns. [11] Several subtypes are currently recognised. [7][11]

References

SAMPLE CERVICAL SCREENING REPORTS

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>LOW RISK FOR SIGNIFICANT CERVICAL ABNORMALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Rescreen in five years.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>UNSATISFACTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype: Unsatisfactory</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Retest within six weeks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>UNSATISFACTORY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Image assisted: Unsatisfactory</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Repeat screening test in six weeks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>INTERMEDIATE RISK FOR SIGNIFICANT CERVICAL ABNORMALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>There is no evidence of a squamous intraepithelial lesion or malignancy</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Repeat test in 12 months.</td>
</tr>
</tbody>
</table>
Cervical Screening

Terminology

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Intermediate Risk for Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>- HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
<td>Low grade intra-epithelial lesion (LSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Repeat test in 12 months.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk for Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>- HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV 18 – Detected</td>
</tr>
<tr>
<td></td>
<td>- HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
<td>High grade squamous intra-epithelial lesion (HSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for Colposcopic assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk for Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>- HPV 16 – Detected</td>
</tr>
<tr>
<td></td>
<td>- HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
<td>Un satisfactory</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for Colposcopic assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk for Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>- HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>- HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
<td>Possible high grade squamous intra-epithelial lesion (pHSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Not identified</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for Colposcopic assessment.</td>
</tr>
</tbody>
</table>
Cervical Screening

Terminology

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk for Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>High grade squamous intra-epithelial lesion (HSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Not identified</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for Colposcopic assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk of Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
</tr>
<tr>
<td></td>
<td>There is no evidence of a squamous intraepithelial lesion or malignancy</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for Colposcopic assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk of Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>There is no evidence of a squamous intraepithelial lesion or malignancy</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>In view of the previously reported abnormality referral for colposcopic assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cervical Screening</th>
<th>Higher Risk of Significant Cervical Abnormality</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
</tr>
<tr>
<td></td>
<td>Low grade squamous intra-epithelial lesion (LSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>In view of the previously reported abnormality referral for colposcopic assessment.</td>
</tr>
<tr>
<td>CERVICAL SCREENING</td>
<td>HIGHER RISK OF SIGNIFICANT CERVICAL ABNORMALITY</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>Atypical endocervical cells of undetermined significance</td>
</tr>
<tr>
<td></td>
<td>There is no evidence of a squamous intraepithelial lesion or malignancy</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for colposcopic assessment by a gynaecologist with expertise in the evaluation of suspected malignancies or by a gynaecological oncologist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>HIGHER RISK OF SIGNIFICANT CERVICAL ABNORMALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
</tr>
<tr>
<td></td>
<td>Possible high grade glandular lesion</td>
</tr>
<tr>
<td></td>
<td>The findings suggest possible adenocarcinoma-in-situ</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Referral for colposcopic assessment by a gynaecologist with expertise in the evaluation of suspected malignancies or by a gynaecological oncologist.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>HIGHER RISK OF SIGNIFICANT CERVICAL ABNORMALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – ThinPrep</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for High Risk HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Image Assisted:</td>
</tr>
<tr>
<td></td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>There are abnormal cells that indicate origin from an invasive squamous cell carcinoma</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Colposcopy is recommended. Patient should be referred to a gynaecological oncologist or a gynaecological cancer centre for assessment.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CERVICAL SCREENING</th>
<th>HIGHER RISK OF SIGNIFICANT CERVICAL ABNORMALITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specimen</td>
<td>Cervical – SurePath</td>
</tr>
<tr>
<td>Test results</td>
<td>PCR for High Risk HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td></td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>Endocervical adenocarcinoma</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Colposcopy is recommended. Patient should be referred to a gynaecological oncologist or a gynaecological cancer centre for assessment.</td>
</tr>
</tbody>
</table>
SAMPLE STAND ALONE LBC REPORTS

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>Cervical – SurePath</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Results</td>
<td>Liquid Based Cytology (LBC), Manually Read:</td>
</tr>
<tr>
<td></td>
<td>Low grade squamous intra-epithelial lesion (LSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This woman is under specialist management, therefore no management recommendation is made.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SPECIMEN</th>
<th>Cervical – ThinPrep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Results</td>
<td>Liquid Based Cytology (LBC), Image assisted:</td>
</tr>
<tr>
<td></td>
<td>High grade squamous intra-epithelial lesion (HSIL)</td>
</tr>
<tr>
<td></td>
<td>Endocervical component: Present</td>
</tr>
<tr>
<td>Recommendation</td>
<td>This woman is under specialist management, therefore no management recommendation is made.</td>
</tr>
</tbody>
</table>

REPORTS FOR SELF-COLLECTED SAMPLES

CERVICAL SCREENING

LOW RISK FOR SIGNIFICANT CERVICAL ABNORMALITY

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lower vaginal sample – Self collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Rescreen in five years</td>
</tr>
</tbody>
</table>

CERVICAL SCREENING

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lower vaginal sample – Self collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Collect a cervical sample for LBC within six weeks</td>
</tr>
</tbody>
</table>

CERVICAL SCREENING

HIGHER RISK FOR SIGNIFICANT CERVICAL ABNORMALITY

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Lower vaginal sample – Self collected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test results</td>
<td>PCR for Oncogenic HPV and genotype:</td>
</tr>
<tr>
<td></td>
<td>• HPV 16 – Detected</td>
</tr>
<tr>
<td></td>
<td>• HPV 18 – Not detected</td>
</tr>
<tr>
<td></td>
<td>• HPV (not 16/18) – Not detected</td>
</tr>
<tr>
<td>Recommendation</td>
<td>Refer for colposcopic assessment. Cervical sample for LBC can be obtained at time of that assessment</td>
</tr>
</tbody>
</table>
4.

UNSATISFACTORY CERVICAL SCREENING RESULTS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

A/Professor Marion Saville – Author
A/Professor Lyndal Anderson – Co-author
Professor Ian Hammond – Co-author
Professor Gordon Wright – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
In the renewed National Cervical Screening Program (NCSP), unsatisfactory screening results may occur either because the HPV test cannot be performed or because liquid-based cytology (LBC), when indicated, cannot be evaluated.

UNSATISFACTORY HPV TESTS

HPV tests can be unsatisfactory because of the effects of inhibition or, in the case of some tests, because the internal control failed to demonstrate the presence of human DNA in the sample. If the HPV test cannot be performed, then the screening episode should be classified and reported as ‘Unsatisfactory’.

UNSATISFACTORY LBC

The Bethesda System 2014 (TBS 2014)[1] defines an unsatisfactory LBC preparation as one with fewer than 5000 well-visualised, well-preserved squamous or squamous metaplastic cells. TBS 2014 provides extensive practical guidance for laboratories.[1]

PRACTICE POINT

REC4.1: Attempt adequate repeat preparations for an unsatisfactory LBC test

In the case of unsatisfactory LBC, laboratories should ensure that adequate repeat preparations are attempted, after dealing with potentially remediable technical problems.

When reflex LBC is unsatisfactory in a case where it was required to determine whether the woman should be referred for colposcopic assessment or should have a repeat test in 12 months, then the screening episode should be classified as ‘Unsatisfactory’ and retesting in 6 weeks should be recommended.

At retesting, the repeat sample should **not** be tested for HPV. The laboratory should undertake LBC and then prepare a cervical screening report combining the results of the original HPV test and the repeat LBC (see Preparation of cervical screening reports in Chapter 3. Terminology). It is anticipated that the support of the NCSR will be critical in this circumstance.

When reflex LBC is unsatisfactory, but the woman requires colposcopic referral regardless of the LBC result, then the screening episode should be reported as ‘Higher risk for significant cervical abnormality’. LBC should then be performed at the time of colposcopy.
4. CERVICAL SCREENING
GUIDELINES

UNSATISFACTORY CERVICAL SCREENING RESULTS

APPLICATION
The laboratory should state why the screening sample is unsatisfactory: either because the HPV test or the LBC could not be completed. In the case of unsatisfactory LBC, the laboratory should report why the sample is unsatisfactory.

PRACTICE POINT

REC4.2: Report cellular abnormality for LBC specimens with abnormal cells
Any LBC specimen with abnormal cells should not be reported as ‘Unsatisfactory’. The identified cellular abnormality should be reported.

MANAGEMENT OF UNSATISFACTORY SCREENING SAMPLES

PRACTICE POINT

REC4.3: Recall women in 6–12 weeks if they have an unsatisfactory screening report
A woman with an unsatisfactory screening report should have a repeat sample collected in 6–12 weeks. If the reason for the unsatisfactory sample has been identified then this problem should be corrected if possible before the repeat sample is collected.

References
5.

BENEFITS, HARMs AND COST-EFFECTIVENESS OF CERVICAL SCREENING IN THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM (NCSP)

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
Professor Karen Canfell – Author
Professor Ian Hammond – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
5. CERVICAL SCREENING
GUIDELINES

BENEFITS, HARMs AND COST-EFFECTIVENESS OF CERVICAL SCREENING
IN THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM (NCSP)

Introduction

All screening programs involve the balancing of benefits, potential harms
and cost-effectiveness considerations.

The benefits of cervical screening include the early detection and treatment of cervical abnormalities, and
a reduction in the incidence of invasive cervical cancer and associated mortality.

Potential harms include the psychosocial impact of
receiving an abnormal screening result and being referred
for subsequent colposcopy and treatment. Treatment of
the cervix may be unnecessary for some lesions that would
have regressed without treatment. There is some evidence
to suggest that treatment may adversely affect obstetric
outcomes in a small proportion of women.[1][2] Assessment
of the utilisation of health resources considers the impact of
cervical screening on clinical services, including colposcopy
and treatment.

Assessment of the cost-effectiveness of cervical screening
considers the total costs of the program and also the
benefits in terms of life-years saved in relation to the total
costs involved in screening, management of detected
abnormalities, and treatment for invasive cervical cancer.

Methods for predicting benefits,
harms and cost-effectiveness

A modelling approach was used to predict the impact on the
benefits, harms, cost-effectiveness and resource utilisation
for the renewed National Cervical Screening Program
(NCSP) in conjunction with these guidelines (see Appendix
A. Modelled evaluation of the predicted benefits, harms
and cost-effectiveness of the renewed National Cervical
Screening Program (NCSP) in conjunction with these
guideline recommendations). The estimates presented here
are an update of predictions that underpinned the Medical
Services Advisory Committee (MSAC) recommendations,[3]
revised to take into account the specific recommendations
of this guideline.

We have used the same model platform that was used
for the MSAC evaluation. This platform has been used
for a number of HPV vaccination evaluations as well as
screening technology, screening interval and screening
management evaluations performed on behalf of national
cervical screening programs in Australia, New Zealand and
England. Details of the modelling methods, and the updates
to model pathways that were made in order to take into
account these guideline recommendations, are provided in
the Technical report.

The model incorporated assumptions about adherence to
screening in the renewed NCSP after taking into account
the introduction of a call-and-recall system for screening.
The specific assumptions for adherence were described
in detail in the MSAC evaluation and are summarised in
the Technical report. The predicted impact of the renewed
NCSP, and associated cervical cancer incidence and
mortality reductions, are predicated on achieving the level of
adherence assumed.
BENEFITS

The impact of the renewed NCSP on predicted cervical cancer cases, deaths, colposcopies and treatments for cervical intraepithelial neoplasia (CIN) grades 2–3 (CIN2/3) is shown in Table 5.1. Taking into account the recommendations of this guideline, the model predicts the following outcomes of the renewed NCSP:

- **For unvaccinated cohorts** (i.e. assuming vaccination had not been introduced) the model predicts a 31% reduction in cervical cancer incidence and a 36% reduction in cervical cancer mortality, compared with the pre-renewal NCSP – equivalent to 265 fewer cancer cases and 82 fewer cancer deaths annually.
- **For cohorts offered HPV vaccination as 12-year-olds** the model predicts a 24% reduction in cervical cancer incidence and a 29% reduction in cervical cancer mortality, compared with the pre-renewal NCSP – equivalent to 85 fewer cancer cases and 28 fewer deaths annually.

See also: Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations.

Table 5.1. Predicted annual numbers of cervical cancer cases and deaths for the pre-renewal NCSP and the renewed NCSP (showing differences in case numbers and relative percentage differences)*

<table>
<thead>
<tr>
<th></th>
<th>Pre-renewal NCSP</th>
<th>Renewed NCSP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If HPV vaccination had not been introduced</td>
<td>For cohorts offered vaccination as 12 year olds</td>
</tr>
<tr>
<td>Cervical cancer cases</td>
<td>850</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>(-265; -31%)</td>
<td>(-85; -24%)</td>
</tr>
<tr>
<td>Cervical cancer deaths</td>
<td>227</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>(-82; -36%)</td>
<td>(-28; -29%)</td>
</tr>
</tbody>
</table>

NOTE: *Figures are based on the female Australian population as predicted for 2017.

POTENTIAL HARMs

Model predictions for impact on colposcopies and treatments

The impact of the renewed NCSP on colposcopies and treatments predicted by the model is shown in Table 5.2. Compared with the pre-renewal NCSP, a 36% increase in colposcopies is predicted if HPV vaccination had not been introduced, but a 7% decrease in colposcopies is predicted in cohorts offered vaccination as 12-year-olds. Although there would have been a substantial increase in colposcopies if HPV vaccination had not been introduced, it should be noted that 70% of these additional colposcopies would have occurred in women less than 35 years of age. However, all of these women will have been offered vaccination by 2017, when these new clinical guidelines will be implemented.

Similarly, a 6% increase in treatments is predicted for CIN2/3 in cohorts not offered HPV vaccination, but a 5% decrease in treatments is predicted for CIN2/3 in cohorts offered vaccination.

For cohorts offered HPV vaccination, overall outcomes for colposcopy and treatment-related harms under the renewed NCSP are expected to be as good or better than for cohorts offered vaccination but managed under the pre-renewal NCSP.

See also: Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations.
5.

BENEFITS, HARMs AND COST-EFFECTIVENESS OF CERVICAL SCREENING IN THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM (NCSP)

<table>
<thead>
<tr>
<th>Table 5.2. Predicted annual numbers of colposcopies and treatments for CIN2/3 for the pre-renewal NCSP and the renewed NCSP (showing differences in case numbers and relative percentage differences)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-renewal NCSP</td>
</tr>
<tr>
<td>If HPV vaccination had not been introduced</td>
</tr>
<tr>
<td>Colposcopies</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Treatments for CIN2/3</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
|NOTE:* Figures are based on the female Australian population as predicted for 2017.

Potential fertility and early pregnancy outcomes

It has been suggested that treatment for CIN2/3 could adversely affect fertility by causing cervical stenosis and a decreased volume of mucus due to the destruction of endocervical glands.

A systematic review of the literature identified only a few studies, mostly of small size, investigating fertility outcomes in treated women. Based on a pooled analysis of four studies, the overall pregnancy rate in treated women was reported to be higher than in untreated women although significant heterogeneity was observed between the primary studies. A Finnish study investigating the use of in-vitro fertilisation (IVF) among women who had undergone treatment for CIN found that the rate of IVF deliveries was not increased after cervical conisation or ablation. A meta-analysis of studies also reported that treatment did not affect the proportion of women who needed more than 12 months to conceive.

A meta-analysis also found no effect of treatment on overall rates of miscarriage or of miscarriage during the first trimester. The risk of miscarriage in the second trimester was found to be higher in treated women, compared with untreated women, with the pooled estimate driven primarily by one large study. However, the design of these studies cannot establish a causal link between treatment and second trimester miscarriage, because other factors cannot be excluded.

Potential obstetric complications

Treatment for cervical abnormalities has been associated with subsequent obstetric complications in some studies. A 2006 meta-analysis of observational studies found significantly increased risks of preterm delivery (< 37 weeks), low birth weight (< 2500 g) and preterm premature rupture of membranes among treated women, compared with untreated women. A subsequent meta-analysis reported that cold-knife cone biopsy and ablation by radical diathermy were associated with significantly higher risks of perinatal mortality, severe preterm delivery (< 32/34 weeks) and extreme preterm delivery (< 28/30 weeks), unlike other therapies. The effects of treatment on preterm delivery have been confirmed by some, but not all subsequent studies. A recent study in England reported an increased risk of preterm delivery among first, second and subsequent births with increasing depth of excision (when compared with small excisions of less than 10 mm).

While the evidence generally suggests an increased risk of obstetric complications following treatment, some evidence suggests that this depends on the depth of excision and amount of cervical tissue removed. Potential confounding factors must also be considered, since even in women with untreated CIN2/3 the risk of preterm delivery may be elevated (possibly due to the presence of risk factors in this group of women that are directly associated with preterm delivery).

Psychosocial effects

The psychosocial aspects of cervical screening and clinical management of detected abnormalities in the renewed NCSP are discussed in Chapter 19. Psychosocial issues.
COST-EFFECTIVENESS

Table 5.3 shows the estimated cost of the NCSP before and after renewal. If HPV vaccination had not been introduced, a 19% reduction in program costs would have been predicted under the renewed NCSP. For cohorts offered vaccination, a 26% reduction in costs is predicted under the renewed NCSP. This is equivalent to a cost saving of $41 million per annum for unvaccinated cohorts and $50 million per annum for cohorts offered vaccination. It should be noted that these cost savings may not be fully realised, since they are predicated on the assumption that there will be an overall reduction in GP visits due to a reduced number of screening visits. However, in practice these screening visits may be replaced by routine visits for other conditions with no obvious reduction in costs to the health system.

Since the renewed NCSP is predicted to be both cost saving and life–year saving, it is not possible to calculate an incremental cost-effectiveness ratio compared with the pre-renewal NCSP. Table 5.3 shows the disaggregated discounted costs and life–years predicted for the pre-renewed NCSP and the renewed NCSP.

See also: Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations.

Table 5.3. Predicted annual cost of the program and the predicted discounted costs and effects for the pre-renewed NCSP and the renewed NCSP (showing differences in costs and relative percentage differences)*

<table>
<thead>
<tr>
<th></th>
<th>Pre-renewal NCSP</th>
<th>Renewed NCSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>If HPV vaccination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>had not been</td>
<td></td>
<td></td>
</tr>
<tr>
<td>introduced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>For cohorts</td>
<td>$223 million</td>
<td>$192 million</td>
</tr>
<tr>
<td>offered vaccination</td>
<td></td>
<td></td>
</tr>
<tr>
<td>as 12 year olds</td>
<td>($–$41 million;</td>
<td>($–$50 million;</td>
</tr>
<tr>
<td></td>
<td>–19%)</td>
<td>–26%)</td>
</tr>
<tr>
<td>Annual cost* of the</td>
<td>$223 million</td>
<td>$182 million</td>
</tr>
<tr>
<td>screening program</td>
<td></td>
<td>($–$41 million;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>–19%)</td>
</tr>
<tr>
<td>Discounted costs^</td>
<td>$383</td>
<td>$304</td>
</tr>
<tr>
<td>Discounted life-years^</td>
<td>21.6219</td>
<td>21.6229</td>
</tr>
</tbody>
</table>

NOTE: * Figures are based on the female Australian population as predicted for 2017.
^ Discounting at 5% per annum starting from 12 years of age.
Impact on clinical practice

The rate of detection of CIN grade 2 and higher (CIN2+) lesions has been reported to increase initially after the transition from cytology-based screening to HPV test-based screening.[14] Accordingly, a transient increase in detected CIN2+ lesions is expected in Australia after the introduction of HPV screening. This may lead to a transient parallel increase in treatments.

This increase would be offset later by a lower rate of detection of CIN grade 3 and higher (CIN3+), due to increased detection and treatment of lower-grade lesions. [10] Direct referral to colposcopy due to a positive oncogenic HPV (16/18) test result is not expected to result in high colposcopy referral rates among Australian women, due to high uptake of HPV 16/18 vaccination in cohorts born in 1981 or later following the National HP Vaccine Program, which commenced in April 2007.[20] Overall, colposcopy referrals are expected to fall markedly as the rate of HPV 16/18 infection declines over time.

To minimise potential harms, MSAC recommended that use of the HPV test is limited to use in healthcare settings that can provide patient counselling, clinical interpretation of results, patient follow-up and confirmatory testing for positive results when required, in addition to testing in a safe environment with infection control procedures.[21] This is important for all women, especially for those who choose to self-collect HPV test samples (see Self-collected samples in Chapter 6. Management of HPV test results).

Colposcopic assessment and management will be more challenging in the renewed NCSP because there will be a higher proportion of women with a positive oncogenic HPV test result but minimal or no cytological changes.

Barriers to implementation

Education for primary care health professionals and the public will be necessary to support implementation of the renewed NCSP and these clinical management guidelines. It is essential that health professionals have an understanding of the purpose, strategy, benefits and safety of primary HPV screening. If this is not achieved, there may be some resistance to full implementation of these changes.

References

References continued

MANAGEMENT OF ONCOGENIC HPV TEST RESULTS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Bruce Armstrong – Co-author
A/Professor Alison Brand – Co-author
Professor Karen Canfell – Co-author
Professor Ian Hammond – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:

• Medical Services Advisory Committee recommendations for HPV testing
• Oncogenic HPV types not detected
• Oncogenic HPV types 16 and/or 18
• Oncogenic HPV types not 16/18
• Self-collected cervical samples
• Women undergoing exit testing
• Screening in women older than 75
• Discussion: Management of oncogenic HPV test results
Medical Services Advisory Committee recommendations for HPV testing

In 2014 the Medical Services Advisory Committee (MSAC) recommended that the National Cervical Screening Program (NCSP) adopt human papillomavirus (HPV) testing for cervical screening at 5-yearly intervals.[1]

After considering the strength of the available evidence in relation to the safety, clinical and cost-effectiveness of a cervical screening pathway for the NCSP, MSAC supported public funding for the following:[1]

- five-yearly cervical screening using a primary HPV test with partial HPV genotyping and reflex liquid-based cytology (LBC) triage, for HPV vaccinated and unvaccinated women aged 25–69 years, with exit testing of women up to age 74 years
- self-collection of an HPV sample for an underscreened or never-screened woman, facilitated by a medical practitioner, nurse practitioner or other healthcare professional on behalf of a medical practitioner who also offers mainstream cervical screening
- a system of invitations and reminders to be sent to women aged 25–69 years, and exit communications to be sent to women aged 70–74 years of age, to ensure the effectiveness of the program
- de-listing of the existing cervical screening test MBS items over a 6- to 12-month transition period.

The renewed NCSP applies to both HPV-vaccinated and unvaccinated women. It involves a primary screening test for HPV with partial genotyping (to distinguish HPV types 16 and 18 from other oncogenic types) and reflex LBC testing for all women with a positive oncogenic HPV test result:

- Women who have a positive oncogenic HPV (16/18) test result are referred immediately to colposcopy, with reflex LBC results available to inform the colposcopy examination.
- For women with a positive oncogenic HPV (not 16/18) test result, LBC is used as a triage to determine whether they are referred for colposcopy, or for repeat HPV testing in 12 months.

MSAC advised that this screening strategy was safer, more effective and more cost-effective than the pre-renewal NCSP,[1] which is based on 2-yearly screening using conventional cytology (the Pap test) in sexually active women between the ages of 18–20 and 69 years.

The MSAC recommendation was based on systematic review of evidence and a comprehensive modelled evaluation.[2][3][4] The modelling for HPV primary screening with partial genotyping for HPV 16/18 indicated an expected reduction in cancer incidence and mortality of over 20% (if women were screened until age 70 years).[3]

See MSAC outcomes. Application No. 1276 – Renewal of the National Cervical Screening Program.
6. CERVICAL SCREENING GUIDELINES

MANAGEMENT OF ONCOGENIC HPV TEST RESULTS

Subsequent modelling, taking into account post-colposcopy management as recommended in these guidelines, has predicted that a 31–36% reduction in incidence and mortality may be achievable in unvaccinated cohorts and a 24–29% reduction may be achievable in cohorts offered vaccination (see Appendix A. Modelled evaluation of the predicted benefits, harms and cost-effectiveness of the renewed National Cervical Screening Program (NCSP) in conjunction with these guideline recommendations).

These recommendations were accepted by the Australian Government in May 2015. A revised NCSP policy has been developed based on these recommendations and has been endorsed by the Standing Committee on Screening. See www.cancerscreening.gov.au.

NCSP policy summary

Five-yearly cervical screening using a primary HPV test:

- partial HPV genotyping and LBC triage
- in HPV-vaccinated and unvaccinated women aged 25–69 years
- exit testing of women up to age 74 years.

Source: National Cervical Screening Policy (2016)

References

Oncogenic HPV types not detected

Women in whom oncogenic HPV types are not detected are at very low risk of cervical intraepithelial neoplasia grade 3 (CIN3) and cervical cancer for at least five years (see Chapter 2. The rationale for primary HPV screening).[1][2][3] MSAC recommended that these women can continue 5-yearly screening (see Medical Services Advisory Committee recommendations for HPV testing).[6]

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.1: Oncogenic HPV types not detected at routine screening

Women who have a screening HPV test in which oncogenic HPV types are not detected should rescreen in 5 years.

References

Oncogenic HPV types 16 and/or 18

Women who have a positive oncogenic HPV test result indicating the presence of oncogenic HPV types 16 and/or 18, regardless of the presence of any other oncogenic types, should be managed according to the recommendations in this section. These guidelines incorporate recommended HPV, cytology and histopathology terminology (see Chapter 3. Terminology).

BACKGROUND
Cross-sectional and longitudinal follow-up studies have shown that HPV type 16 is associated with a higher cross-sectional and future risk of developing CIN grade 2 or higher (CIN2+) and CIN grade 3 or higher (CIN3+) than other oncogenic HPV types. Worldwide, oncogenic HPV types 16/18 are detected in approximately 70% of cervical cancers. Preliminary results from a recent Australian consecutive case series found that HPV types 16 and 18 were detected in 52.3% and 19.4% of cervical cancers, respectively. HPV testing without genotyping has a high sensitivity but lower specificity for the detection of CIN2+ compared to cytology, so referral of all HPV-positive women for colposcopic assessment (especially in unvaccinated populations) would result in a large number of unnecessary colposcopy procedures. However, partial genotyping to detect the highest risk oncogenic HPV types 16/18 can be used to stratify risk after primary HPV screening and thus improve the specificity of the HPV test.

MSAC undertook systematic reviews and modelling analyses to assess the efficacy and safety of the partial genotyping strategy in which women with a positive oncogenic HPV (16/18) test result are referred to colposcopy, and those with a positive oncogenic HPV (not 16/18) test result are triaged by LBC. MSAC compared this and other HPV testing strategies with the cytological screening strategy used in the pre-renewal NCSP.

EVIDENCE
MSAC systematic reviews
The details and results of the systematic reviews are described in the MSAC review of evidence report. No studies were identified that provided adequate evidence of the effect of HPV partial genotyping screening strategies on cervical cancer incidence or cervical cancer mortality rates in either vaccinated or unvaccinated populations.

See the MSAC National Cervical Screening Program renewal: evidence review November 2013.

MSAC modelling
Given the limited evidence from systematic reviews, MSAC evaluated partial genotyping strategies in the Australian context using a comprehensive model to synthesise clinical trial evidence identified through systematic reviews and Australian data for screening participation, HPV vaccine uptake by age, and management practices.

The modelling approach, assumptions and options are described in the MSAC reports. The modelling for HPV primary screening with partial genotyping indicated an expected reduction in cancer incidence and mortality of over 20% (if women were screened until age 70 years).

See MSAC outcomes. Application No. 1276 – Renewal of the National Cervical Screening Program.
6.

CERVICAL SCREENING
GUIDELINES

MANAGEMENT OF ONCOGENIC HPV TEST RESULTS

RECOMMENDATIONS

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.2: Women with a positive HPV (16/18) test result

Women with a positive oncogenic HPV (16/18) test result should be referred directly for colposcopic assessment, which will be informed by the result of reflex LBC.

CONSENSUS-BASED RECOMMENDATION*

REC6.3: Referral to gynaecological oncologist for LBC prediction of invasive disease

Women who have a positive oncogenic HPV (16/18) test result with a LBC report of invasive cancer (squamous, glandular or other) should be referred to a gynaecological oncologist or gynaecological cancer centre for urgent evaluation, ideally within 2 weeks.

PRACTICE POINT

REC6.4: Referral of women with a positive HPV (16/18) test result and unsatisfactory LBC

When reflex LBC is unsatisfactory, but the woman requires colposcopic referral regardless of the LBC result (i.e. when HPV 16/18 is detected), then the screening episode should be classified as ‘Higher risk for cervical cancer or precursors’. A cervical sample for LBC should be collected at the time of colposcopy (see Chapter 4. Unsatisfactory cervical screening results).

PRACTICE POINT

REC6.5: Referral of women with a positive HPV (16/18) test result and reflex LBC pHSIL/HSIL

Women with a positive oncogenic HPV (16/18) test result and reflex LBC prediction of pHSIL/HSIL should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.

BENEFITS AND HARMs

When making the recommendation to refer women with a positive oncogenic HPV (16/18) test result directly for colposcopic assessment, MSAC took into account the benefits and harms and the health system implications of partial genotyping and immediate colposcopy in this group.

Updated modelling, taking into account the recommendations in these guidelines, has informed an assessment of the benefits and harms of partial genotyping. The updated modelling used the same platform as that used for the MSAC evaluation (POLICY1-Cervix),[5] and took into account the Renewed NCSP screening recommendations and management as specified in these guidelines. The findings are summarised in Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP).

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

The referral of women with a positive oncogenic HPV (16/18) test result for colposcopy, regardless of the LBC prediction, is a major change to clinical practice and requires appropriate education and implementation.
6.

CERVICAL SCREENING
GUIDELINES

MANAGEMENT OF ONCOGENIC HPV TEST RESULTS

Resourcing

When making this recommendation, MSAC took into account the resourcing issues for partial genotyping and the referral of women with a positive oncogenic HPV (16/18) test result for immediate colposcopy.

Updated modelling, taking into account these detailed Guideline recommendations, and taking into account the reduction in oncogenic HPV 16/18 infections due to vaccination in the population, has informed an assessment of the resourcing associated with partial genotyping strategies (see Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP)).

Barriers to implementation

A potential barrier is that GPs may not refer women who have a positive oncogenic HPV (16/18) test result to colposcopy, especially if the reflex LBC report is negative. However, the risk of this will be mitigated by the laboratory report to the GP, clearly recommending referral and the registry follow-up protocols with reminder letters as needed.

A second potential barrier is that the woman may not fully understand the need for colposcopy, especially if the reflex LBC report is negative, and may fail to attend. Registry reminder letters will play an important role in this situation.

References

Oncogenic HPV types not 16/18

Women who have a positive oncogenic HPV test result for which HPV types other than 16 and/or 18 are detected (‘HPV not 16/18’), should be managed according to the recommendations in this section.

Women who have a positive oncogenic HPV test result indicating the presence of both HPV type 16 and/or 18 and other oncogenic HPV types (not 16/18), for example, a woman whose test indicates the presence of types 16 and/or 18 and 31, or 18 and 33), should be managed as for HPV types 16/18 (see Oncogenic HPV types 16/18).

Some HPV test platforms may provide additional channels with information on some of the other oncogenic HPV types (e.g. Type 31, 33 and/or 45). For the purposes of these guidelines, these HPV types should be considered as ‘oncogenic HPV (not 16/18)’ and women with these types should be managed accordingly.

These guidelines incorporate recommended HPV, cytology and histopathology terminology (see Chapter 3. Terminology).
BACKGROUND
MSAC recommended LBC triage for women with a positive oncogenic HPV (not 16/18), but made no recommendations for subsequent management on the basis of triage LBC.

For some groups of women, it may be safe to delay colposcopy and monitor risk with follow-up surveillance, as distinct from women with a positive oncogenic HPV (16/18) test result, for whom MSAC recommended immediate colposcopy (see HPV oncogenic types 16/18).

HPV infections typically clear rapidly, with an estimated 67% of infections resolving by 12 months. After viral clearance (i.e., oncogenic HPV is no longer detected), women are at very low risk of significant cervical disease for the next 5 years. Therefore, if women with a positive oncogenic HPV (not 16/18) test result are not referred to colposcopy immediately, 12 months is an appropriate follow-up interval to allow for viral clearance.

The modelled MSAC evaluation of partial genotyping strategies made the following assumptions:

- Women with possible high-grade squamous intraepithelial lesions (pHSIL) or a higher-grade lesion on LBC are referred for immediate colposcopy, irrespective of HPV type. This assumption is standard-of-care because these women are already known to be at risk of a high-grade lesion. Within the pre-renewal NCSP, women with pHSIL are referred to immediate colposcopy.

- Women with a positive oncogenic HPV (not 16/18) test result who have negative LBC undergo follow-up surveillance at 12 months rather than immediate colposcopy.

The MSAC evaluation also modelled alternative management options for women with a LBC prediction of possible low-grade intraepithelial lesion (pLSIL) or lower-grade intraepithelial lesion (LSIL) and a positive oncogenic HPV (not 16/18) test result. These women are at intermediate risk of significant cervical abnormality (see Chapter 3, Terminology). MSAC did not make recommendations for the follow-up of this group of women. Therefore, further systematic reviews and modelling analyses were undertaken to inform recommendations for this group. The updated modelled analysis takes into account the management pathways for colposcopy referral, colposcopic management, and post-treatment test-of-cure as specified in these guidelines, some of which differ from the assumptions made in the MSAC modelling. Therefore, the final modelled analysis considers the impact of changing recommendations for this group on outcomes and costs (see Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program [NCSP] and Modelling reports.)

EVIDENCE
Systematic reviews and modelling studies were undertaken to assess the comparative safety and effectiveness of different strategies based on LBC triage in women with a positive oncogenic HPV (not 16/18) test result.

For women with a positive oncogenic HPV (not 16/18) test result and LBC prediction of pLSIL/LSIL, we compared the following strategies:

- immediate colposcopy
- 12-month follow-up and referral to colposcopy if follow-up HPV testing is positive (regardless of HPV type) at 12 months.

For women with a positive oncogenic HPV (not 16/18) test result who do not undergo immediate colposcopy, we compared the following strategies:

- repeated HPV testing at 12 and 24 months before returning to 5-yearly screening if negative at both follow-up tests
- repeated HPV testing at 12 months only, before returning to 5-yearly screening if negative at 12 months.

Systematic review
The systematic literature search identified no randomised or pseudo-randomised controlled trials directly addressing either of the following:

- the safety and effectiveness of immediate colposcopy for women with a positive oncogenic HPV (not 16/18) test result and a reflex LBC prediction of pLSIL/LSIL, compared with 12 months’ delay.

- the safety and effectiveness of repeating HPV testing after 12 and 24 months for women with a positive oncogenic HPV (not 16/18) test result and LBC reported negative or with a prediction of pLSIL/LSIL, compared with repeating HPV testing at 12 months only, before returning to 5-yearly screening.

The search strategies and inclusion and exclusion criteria are described in detail in the Technical report.

In the absence of studies directly addressing these issues, an indirect approach to the literature review was planned which focussed on benchmarking (i.e., assessing the underlying risk threshold for abnormalities that may develop into CIN3 or invasive cancer, which was accepted in the pre-renewal NCSP as requiring colposcopy referral). Similarly, we sought
evidence on the benchmark (lower) risk level for which, in the pre-renewal NCSP, it was accepted that 12-month follow-up was appropriate. These “benchmark” risks were compared with the risks in women in the renewed NCSP with LBC reported negative or with a prediction of pLSIL/LSIL and a positive oncogenic HPV (not 16/18) test result.

Risk benchmarks were considered for women with a positive oncogenic HPV (not 16/18) test result and a reflex LBC prediction of pLSIL/LSIL:

- **12-month follow-up benchmark**: as recommended for women with LSIL cytology in the pre-renewal NCSP.[5]

- **Colposcopy referral benchmark 1 (cytology prediction of pHSIL/HSIL)**: as recommended (and considered standard-of-care) in the pre-renewal NCSP.[5]

- **Colposcopy referral benchmark 2 (positive oncogenic HPV (16/18) test result)**: as recommended by MSAC in the renewed NCSP.

Systematic reviews were performed to identify studies examining the risk for the development of CIN3+ (CIN 3 or invasive cervical cancer) among women with a positive oncogenic HPV (not 16/18) test result and pLSIL/LSIL cytology, compared with each of the following groups:

- women with cytological prediction of pLSIL/LSIL, regardless of HPV status
- women with cytological prediction of pHSIL/HSIL, regardless of HPV status
- women with a positive oncogenic HPV (16/18) test result, regardless of cytology status.

The search strategies and findings are described in detail in the Technical report.

Searches identified six relevant prospective cohort studies (level II evidence): two longitudinal studies[8][9] and four studies that reported results for outcomes on immediate colposcopy. None of these studies were specifically designed to compare the risks associated with specific oncogenic HPV genotypes and specific cytology findings. As a result, it was not possible to determine whether subgroups with oncogenic HPV types (not 16/18), pLSIL or LSIL were similar to benchmark groups or to control for confounding factors such as smoking. Therefore, all six studies were assessed to have a high risk of bias.

Both longitudinal studies reported CIN3+ risks associated with oncogenic HPV (not 16/18), LSIL cytology and, for the benchmark for 12-month follow-up, all LSIL cytology regardless of HPV status. In one study women were actively followed up for 2 years and underwent an exit colposcopy[9] and in the other women were passively followed-up for a maximum of 18 years.[9]

Two studies[8][9][10] reported CIN3+ risks on immediate colposcopy for women with a positive oncogenic HPV (not 16/18) test result, pLSIL (ASC-US, Bethesda 2001) or LSIL cytology and the benchmarks for immediate colposcopy (pHSIL/HSIL cytology or positive HPV (16/18) test result), as well as the benchmark for 12-month follow-up (all LSIL).

The findings of these studies showed the following:

- **For women with a positive oncogenic HPV (not 16/18) test result and a cytological prediction of LSIL, the risk of CIN3+ was lower than that for the 12-month follow-up benchmark (LSIL cytology, regardless of HPV status):**
 - over 2 years in cohorts aged > 18 years or > 30 years at baseline
 - after 18 years in a cohort aged > 16 years at baseline.

- **For women with a positive oncogenic HPV (not 16/18) test result and a cytological prediction of pLSIL/LSIL, the risk of CIN3+ diagnosed on immediate colposcopy was consistently less than half the risk for the immediate colposcopy benchmarks (cytological prediction of pHSIL/HSIL or positive oncogenic HPV (16/18) test result) and similar to (if not less than) the 12-month follow-up benchmark (cytological prediction of LSIL, regardless of HPV status) in cohorts aged > 25 years, > 21 years or > 18 years at baseline.

A second systematic review was performed to identify studies examining the risk of CIN3 or higher-grade lesion among women undergoing routine cervical screening with a positive oncogenic HPV (not 16/18) test result and negative cytology, compared with the following groups:

- 12-month follow-up benchmark (women with a cytological prediction of pLSIL/LSIL, regardless of HPV status)
- women with a cytological prediction of pLSIL/LSIL and a positive oncogenic HPV (not 16/18) test result.

No studies that met inclusion criteria were identified. The search strategy and findings are described in detail in the Technical report.

Modelling

The findings of the systematic review confirmed that a modelled analysis was required to assess the safety and effectiveness of immediate colposcopy, compared with returning in 12 months for a repeat HPV test, for women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL at triage. The modelling study assessed the population-level effects of alternative strategies, within a national program of primary HPV screening with partial genotyping, for women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL. Modelling was performed for HPV-unvaccinated women and for cohorts offered vaccination.

Options compared in women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL

Comparison 1:

- (Option A) follow-up with HPV testing in 12 months, followed by colposcopy for those with a positive oncogenic HPV (any type) test result at 12 months, or return to routine 5-yearly screening if oncogenic HPV not detected at 12 months
- (Option B) referral to colposcopy.
Comparison 2:

• (Option A) as above
• (Option C) referral to follow-up with HPV testing in 12 months and 24 months, with immediate colposcopy for those with a positive oncogenic HPV (any type) test result at either follow-up test, or return to routine 5-yearly screening if oncogenic HPV not detected at both follow-up tests.

Summary of findings

The findings are described in detail in the Modelling reports.

Comparison 1: 12-month follow-up versus immediate colposcopy

Modelling comparing 12-month follow-up with immediate referral to colposcopy in women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL predicted the following:

• For women in this group undergoing 12-month follow-up (Option A), the 20-year risk of developing invasive cervical cancer (Figure 6.1) is lower than the risk for women with a screening cytology prediction of LSIL in the pre-renewal NCSP (i.e. lower than the accepted benchmark risk for 12-month follow-up in Australia).

• The renewed NCSP, incorporating 12-month follow-up for women in this group (and incorporating other recommendations in these guidelines), is predicted to reduce cervical cancer incidence and mortality by 31–36% in unvaccinated cohorts and 24–29% in cohorts offered vaccination, compared with the pre-renewal NCSP.

• For women in this group, immediate referral to colposcopy provides an incremental 1–3% reduction in cervical cancer incidence and mortality, compared with 12-month follow-up. However, colposcopy referral for this group substantially increases the number of colposcopies in the renewed NCSP, with more than 650 colposcopies required to avert an additional case of cervical cancer, compared with 12-month follow-up.

• Colposcopy referral of only women aged >45 years in this group, however, is more cost-effective, with an incremental cost-effectiveness ratio of $40,000/lyS (95% CrI: $37,000–42,000/lyS) in unvaccinated cohorts, and $41,000/lyS (95% CrI: $38,000–44,000/lyS) in cohorts offered vaccination.

Figure 6.1. Predicted 20-year risk of cervical cancer in women with a positive oncogenic HPV (not 16/18) test result and a reflex LBC prediction of pLSIL/LSIL

The black horizontal line in each figure indicates the risk under the pre-renewal NCSP for women with a cytological prediction of LSIL at a routine screening visit and a negative cytology test in the previous 2 years.
Comparison 2: follow-up options (12 and 24 months versus 12 months only)

Modelling comparing follow-up at both 12 months and 24 months, with 12-month follow-up only, in women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL at index screening visit predicted the following:

- Performing both 12-month and 24-month follow-up results in less than 1% difference in cervical cancer incidence and mortality and less than 1% difference in colposcopies, compared with 12-month follow-up only.
- Performing both 12-month and 24-month follow-up for this group would be very cost-ineffective, with an incremental cost-effectiveness ratio of > $300,000/LYS, compared with 12-month follow-up only.
- Limiting both 12-month and 24-month follow-up to women over 55 in this group remains cost-ineffective compared with 12-month follow-up only. The incremental cost-effectiveness ratio is > $65,000/LYS if 12-month and 24-month follow-up is used in women aged over 55 years, compared with performing 12-month follow-up only for women of all ages.

The detailed description of the model assumptions, calibration and findings are provided in the Modelling reports.

EVIDENCE SUMMARY AND RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Evidence summary</th>
<th>Level</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data from two prospective cohort studies indicate that women with a cytological prediction of LSIL in whom HPV 16/18 is not detected, but have a positive oncogenic HPV (not 16/18) test result at lower risk for CIN3+ over 2 years (and for up to approximately 18 years) than women with a cytology prediction of LSIL, regardless of HPV status, (who are referred to 12-month follow-up within the pre-renewal NCSP).</td>
<td>II</td>
<td>[3], [4]</td>
</tr>
<tr>
<td>No longitudinal studies were found that reported the subsequent risks of CIN3+ for women with normal cytology in whom HPV 16/18 is not detected, have a positive oncogenic HPV (not 16/18) test result, compared with either of the following groups:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>• women with a cytological prediction of pLSIL/LSIL, regardless of HPV status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• women with a cytological prediction of pLSIL/LSIL and a positive oncogenic HPV (not 16/18) test result.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modelling study findings</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>For women with a positive oncogenic HPV (not 16/18) test result and reflex LBC prediction of pLSIL/LSIL:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• modelling comparing 12-month follow-up with immediate colposcopy predicted that the 20-year risk of developing invasive cervical cancer for those who have 12-month follow-up surveillance is lower than the risk in women with a screening cytology result of LSIL in the pre-renewal NCSP (i.e. lower than the accepted benchmark risk for 12-month follow-up in Australia).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• performing both 12-month and 24-month follow-up results in < 1% difference in cervical cancer incidence and mortality and < 1% difference in colposcopies, compared with 12-month follow-up only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EVIDENCE-BASED RECOMMENDATION

REC6.6: Positive oncogenic HPV (not 16/18) test result at routine screening

Women with a positive oncogenic HPV (not 16/18) test result, with a LBC report of negative or prediction of pLSIL/LSIL, should have a repeat HPV test in 12 months.

GRADE

C

PRACTICE POINT

REC6.7: Referral of women with a positive oncogenic HPV (not 16/18) test result and LBC prediction of pH SIL, HSIL or any glandular abnormality

Women with a positive oncogenic HPV (not 16/18) test result, with a LBC prediction of pH SIL/HSIL or any glandular abnormality, should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.
CONSENSUS-BASED RECOMMENDATION*

REC6.8: Referral to gynaecological oncologist for LBC prediction of invasive disease

Women who have a positive oncogenic HPV (not 16/18) test result with a LBC report of other cancer (squamous, glandular or other) should be referred to a gynaecological oncologist or gynaecological cancer centre for urgent evaluation, ideally within 2 weeks.

EVIDENCE-BASED RECOMMENDATION

REC6.9: Management after repeat HPV test at 12 months, following initial positive oncogenic HPV (not 16/18) test result

At repeat HPV testing 12 months after a positive oncogenic HPV (not 16/18) test result with reflex LBC negative or pLSIL/LSIL:

- if a woman has a positive oncogenic HPV (any type) test result, reflex LBC will be performed and she should be referred for colposcopic assessment
- if oncogenic HPV is not detected, the woman should be advised to return to routine 5-yearly screening.

BENEFITS AND HARS

While all screening programs will fail to detect some cases, implementation of these recommendations does not present any significant concern about the potential for missed cancers. Rates of cervical cancer are low in Australia, compared with international rates. Modelling, taking into account post-colposcopy management as recommended in these guidelines, has predicted that a 31–36% reduction in incidence and mortality may be achievable in unvaccinated cohorts and a 24–29% reduction may be achievable in cohorts offered vaccination (see Chapter 2. The rationale for primary HPV screening and (see Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP)).

In 2005, the NCSP adopted a policy of 12-month follow-up for women with a cytological prediction of pLSIL/LSIL, replacing the previous policy of immediate referral to colposcopy. A recent evaluation by the NCSP Quality and Safety Monitoring Committee found that this policy was not associated with an increase in the incidence of cervical cancer in women aged 20–69 years.

Within the renewed NCSP, the policy of 12-month follow-up for women with a LBC prediction of pLSIL/LSIL would apply only to the subgroup of women at intermediate risk of significant cervical abnormality based on HPV testing with partial genotyping, in contrast to the pre-renewal program in which the policy applies to an undifferentiated group of women with either high or intermediate risk. Accordingly, modelled results suggest that the risk for women with a positive oncogenic HPV test result and a reflex LBC prediction of pLSIL/LSIL who have 12-month follow-up surveillance, is lower than the risk in women with a screening cytological prediction of LSIL in the pre-renewal NCSP (i.e. the risk in this group is lower than the accepted benchmark risk for 12-month follow-up in Australia).

More than half of women with an oncogenic HPV infection are expected to clear the infection within 12 months. Those with persistent infection (or with an HPV infection detected on repeat testing) would be identified at the 12-month HPV repeat test and referred to colposcopy, regardless of LBC result.

Implementation of these recommendations will avoid many unnecessary colposcopies and associated harms (including biopsy, overtreatment, anxiety and financial costs) for women with HPV-related cervical abnormalities that would resolve spontaneously without medical intervention.
HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice
Colposcopic assessment and management will be more challenging in the renewed NCSP because there will be a higher proportion of women with a positive oncogenic HPV test result who have minimal or no cytological changes. In particular, women with persistent infections with oncogenic HPV (not 16/18) will be referred to colposcopy after 12 months and a very large proportion of these will represent productive HPV infection without neoplastic potential.

Resourcing
Updated modelling, taking into account these detailed guideline recommendations, and taking into account the reduction in HPV 16/18 infections due to vaccination in the population, has informed an assessment of the resourcing required. Similarly the women in this situation may not fully understand the need for colposcopy, especially if the reflex LBC result is negative, and may fail to attend. Patient education and registry reminder letters will play an important role in this situation.

References
Self-collected vaginal samples

BACKGROUND
Only six in 10 women participate in the NCSP at the recommended 2-year interval.[1] In very remote regions, the 2-yearly participation rate is estimated at 55%.[1] There is a clear trend of decreasing participation with decreasing socioeconomic status, with an estimated participation rate of 52% in areas of lowest socioeconomic status.[1]

Data from the Victorian Cervical Cytology Register (VCCR) show that more than 80% of women diagnosed with invasive cervical cancer have never been screened or have participated in the screening program but were more than 6 months overdue for a recommended cytology test at the time of their cancer diagnosis.[2] Self-collection of HPV test samples has been suggested as a strategy to overcome barriers to undergoing a screening test that some women experience. Providing HPV self-collection kits to never-screened and under-screened women has been shown to improve screening participation in international studies.[3]

Under the renewed NCSP, HPV testing on self-collected samples will be available to some women aged 30–74 years under the supervision of a healthcare professional who also offers cervical screening. The following groups of women will be eligible:[4]

- women who have never participated in the NCSP and are 30 years of age or over
- women who are overdue for cervical screening by 2 years or longer and are 30 years of age or over.

EVIDENCE

MSAC systematic review

The MSAC evaluation assessed the comparative safety and effectiveness of including self-collected samples for HPV testing for never-screened and under-screened women, to supplement the organised screening program using clinician-collected samples for HPV testing, compared with the existing collection protocol.[1]

The MSAC assessment of accuracy of self-collected samples was based on 10 level III-2 diagnostic accuracy studies conducted in a screening setting, which were included in a systematic review.[2] Evidence for adherence rates was obtained from a randomised controlled trial[3] and two cohort studies.[6]

The MSAC systematic review made the following conclusions:[6]

- The accuracy of HPV testing using self-collected samples varies between different types of sampling devices and HPV tests.
- HPV tests using self-collected samples have moderate-to-high sensitivity and comparably high specificity for detecting CIN2+, compared with clinic HPV testing in nine of 10 studies identified, with a relative sensitivity of 0.62–1.00 and relative specificity of 0.93–1.00.
- High rates of adherence to screening follow-up have been reported among previously unscreened women with a positive HPV test result from a self-collected sample.

Other evidence

A more recent meta-analysis[7] found that the sensitivity and specificity of HPV testing to detect CIN2+ in self-collected samples were similar to those for clinician-collected samples when using validated PCR tests. When using signal amplification-based HPV assays, self-collected samples showed lower sensitivity than clinician-collected samples.[8][9]

Two recent studies conducted in Victoria suggest that offering self-collection is likely to be acceptable to Australian women who have not been screened recently.[10][11] One of these, a randomised controlled trial, additionally found that offering self-collection was more effective than a reminder letter in encouraging women who were unscreened or overdue for screening to undergo a round of screening.[12] Overall, 75.7% of women with a positive oncogenic HPV (any type) test result had the appropriate clinical follow-up within 6 months. Among 45 women with a positive oncogenic HPV (16/18) test result, 28 (62.2%) attended for colposcopy within 6 months, and attendance for colposcopy was lower among women with negative or LSIL cytology (18/27 attended) than among women with HSIL cytology.
A recent modelled analysis found that undergoing even one round of screening could substantially reduce an unscreened woman’s risk of cervical cancer over her lifetime, by around 41% if this occurred at age 30 or 40. The authors noted that benefits of self-collection would be maximised by using a sufficiently accurate HPV test that had capacity to perform partial genotyping for HPV 16/18.

RECOMMENDATIONS

Flowchart 6.2. Cervical screening pathway for primary oncogenic HPV testing using self-collected samples

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.10: Oncogenic HPV types not detected in self-collected sample

Women who have undergone HPV testing on a self-collected sample and in whom oncogenic HPV is not detected should be invited to re-screen with a HPV test in 5 years and should be advised to have a clinician-collected sample.

MSAC EVIDENCE-BASED RECOMMENDATION

REC6.11: Referral of women with positive oncogenic HPV (16/18) test result (self-collected sample)

Women who have undergone HPV testing on a self-collected sample and have a positive oncogenic HPV (16/18) test result should be referred directly for colposcopic assessment. A cervical sample for LBC should be obtained at the time of colposcopy and is not required prior to referral.
6. CERVICAL SCREENING
GUIDELINES
MANAGEMENT OF ONCOGENIC HPV TEST RESULTS

CONSENSUS-BASED RECOMMENDATION

REC6.12: Women with a positive oncogenic HPV (not 16/18) test result (self-collected sample)

Women who have undergone HPV testing on a self-collected sample and who have a positive oncogenic HPV (not 16/18) test result should be advised to visit their GP or healthcare professional to obtain a cervical sample for LBC:

- If the LBC test result is negative or pLSIL/LSIL, HPV testing should be repeated in 12 months, preferably by a healthcare professional.
- If the LBC test result is pHSiL/HSiL or any glandular abnormality the woman should be referred for colposcopy at the earliest opportunity, ideally within 8 weeks.

CONSENSUS-BASED RECOMMENDATION

REC6.13: Management of 12 month repeat HPV test result after initial positive oncogenic HPV (not 16/18) test result on a self-collected sample

At 12-month repeat HPV testing:

- Women in whom oncogenic HPV is not detected should return to routine 5 yearly screening, and should be advised to have a clinician-collected sample at that time.
- Women with a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment:
 - If the repeat HPV test was clinician-collected, reflex LBC will be available to inform colposcopic assessment.
 - If the repeat HPV test was self-collected, a cervical sample for LBC should be obtained at the time of colposcopy.

PRACTICE POINT

REC6.14: Clinician-collected sample for follow-up HPV test after initial self-collected sample

When follow-up HPV testing is required after an initial positive oncogenic HPV test result, the sample should be collected by a clinician, if possible.

Women should be advised that a clinician-collected sample is preferred because it is more effective and reflex LBC can be performed on the same sample, which avoids a further visit to collect a cervical sample for LBC.

If the woman declines the clinician-collected sample, she can have a self-collected sample and is eligible for reimbursement under the Medical Benefits Schedule.

PRACTICE POINT

REC6.15: Clinician-collected sample after invitation to re-screen

Women who are invited to have a clinician-collected sample, and decline, will not be eligible for self-collection at that time.

† Not eligible for reimbursement under the Medical Benefits Schedule unless they meet the eligibility criteria for self-collection (aged > 30 years, at least 2 years overdue for cervical screening test, or never been screened) as per NCSP policy.

BENEFITS AND HARMs

Women who are eligible for the self-collection pathway will benefit by participation in screening, especially if disease is detected and treated. They will also benefit by being reassured that they are at low risk of cervical cancer if oncogenic HPV is not detected.

Women who are eligible for self-collection may be more anxious about cervical screening than other women and will need special consideration in regard to reassurance and explanation of the screening pathway and the procedure. Women who have a positive oncogenic HPV (any type) test result will require a clinician-collected cervical sample.
for LBC and should be guided through this process in a sensitive and culturally appropriate manner. Women who have a positive HPV (16/18) test result can have this sample collected at colposcopy. It is also important that health professionals communicate the meaning of HPV test results in a sensitive and culturally appropriate manner.

See Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed NCSP.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

Women who are eligible for self-collection must be given clear information by the supervising healthcare professional about the self-collection technique, how they will receive the test results and what follow-up will be required if the HPV test result is positive.

Resourcing

If women who have been regular participants in the NCSP delay their screening attendance to become eligible for self-collection, they may require two visits to their healthcare provider, which will increase the costs of the program.

Barriers to implementation

Women may fail to respond to an invitation for self-collection. If the woman sees a healthcare professional for a different reason and the medical record reveals that the woman is eligible for self-collection (never screened or under-screened) it would be appropriate for the healthcare professional to encourage cervical screening.

Women with a positive oncogenic HPV test result may fail to undergo follow-up for further assessment, which should include taking a cervical sample for LBC and/or colposcopy. It is possible that some healthcare professionals may choose to delay colposcopy referral for women with a positive oncogenic HPV (16/18) test result until after they have collected a cervical sample for LBC. However women who have a positive HPV (16/18) test result should be referred directly to colposcopy and the cervical sample for LBC will collected by the colposcopist.

Key messages to educate women and healthcare professionals about the self-collection option and subsequent management of any abnormalities will be developed as part of implementation planning to support this guideline.

References

Women undergoing exit testing

BACKGROUND
The HPV test is significantly more sensitive than cytology for the detection of cervical abnormalities caused by HPV infection, and a single HPV test for which oncogenic HPV is not detected is considered sufficient to safely discharge women from the NCSP.[1] MSAC has recommended that women between the ages of 70 and 74 years can cease 5 yearly screening after a HPV test at which oncogenic HPV is not detected.[1]

RECOMMENDATIONS

MSAC EVIDENCE-BASED RECOMMENDATION
REC6.16: Women aged 70–74 years in whom oncogenic HPV is not detected (exit testing)
Women can be discharged from the NCSP if they are aged 70–74 years and have a screening test at which oncogenic HPV is not detected.

CONSENSUS-BASED RECOMMENDATION
REC6.17: Referral of women aged 70–74 years with a positive oncogenic HPV test result (exit testing)
Women aged 70–74 who have a positive oncogenic HPV (any type) test result should be referred directly for colposcopic assessment, which should be informed by the result of reflex LBC.

Screening in women older than 75

Within the renewed NCSP, women aged 75 years and older are eligible to undergo a cervical screening test if they have never participated in screening or have not had a screening test in the past 5 years.[1]

RECOMMENDATIONS

NCSP RECOMMENDATION
REC6.18: Women aged 75 years or older who request screening
Women who are 75 years or older who have never had a cervical screening test, or have not had one in the previous five years, may request a test and can be screened.

References

References
Discussion: Management of HPV test results

UNRESOLVED ISSUES

There is uncertainty about participation in the Renewed NCSP over the 5-yearly interval and compliance with the follow-up recommendations for HPV-positive women. There is also uncertainty about the timing of impact of HPV vaccination on the numbers of women referred to colposcopy, and about the transitional aspects of the program and impact on colposcopy volumes. These issues will be informed by modelled analysis (see Modelling reports, safety monitoring of the renewed NCSP, and by emerging data from the Compass trials.

Women who test positive for HPV 16/18 on a self-collected sample will need further investigation. It is unclear at present whether these women would prefer to visit their usual primary care health professional to have a cervical sample for liquid-based cytology taken by someone they know and trust, or be referred directly to specialist colposcopist and have the sample taken at that time. A stepwise protocol involving primary care would involve an extra examination, but might be perceived as less threatening. Several options might be offered, one of which should be further assessment by a female primary care practitioner or specialist.

ONGOING CLINICAL RESEARCH

A large RCT (Compass) is underway comparing 5-yearly HPV testing with 2.5 yearly liquid-based cytology screening in women aged 25–69 years in Victoria.¹ The primary objectives of Compass are:¹

• to confirm that 5.5-year CIN3+ free survival is non-inferior for HPV screening compared with cytology screening in vaccinated and unvaccinated cohorts

• (if HPV screening is not inferior to cytology screening) to determine if 5.5-year CIN3+ free survival is superior among HPV-screened women who were HPV-negative at baseline, compared with cytology-screened women who were cytology-negative at baseline and at 2.5-year follow-up.

• Compass is providing information on colposcopy referral rates and outcomes and is acting as a sentinel experience for the Renewed NCSP.

FUTURE RESEARCH PRIORITIES

The use of dual-stained cytology for the overexpression of the molecular markers p16 and Ki 67 has been proposed as a strategy for further stratification of risk among HPV-positive women.²⁻⁴ In particular, there is a need to determine whether or not dual staining (for p16 and Ki67) for women who test positive to HPV (not 16/18) on partial genotyping would materially improve the prediction of cervical cancer risk. The Compass trial is also assessing the role of this technology and initial results are expected in 2017–2018.

References

COLPOSCOPY

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
- Mr. C. David H. Wrede – Author
- A/Professor Alison Brand – Co-author
- Professor Ian Hammond – Co-author
- Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:
- Introduction
- Colposcopy terminology
- Principles of practice
- History, examination and investigation
- Treatment
- Colposcopy data for the National Cancer Screening Register
- Quality improvement in colposcopy
- Supplement. Colposcopy information for discussion with patient
- Supplement. Colposcopy technologies and documentation
Introduction

The aim of diagnostic colposcopy following an abnormal cervical screening test is to assess the nature, severity and extent of the abnormality.

This requires the identification of the cervix and external os, the exclusion of invasive disease, the mapping and typing of the transformation zone (TZ), the identification of any visible abnormalities and the targeting of the most abnormal area(s) for biopsy. Systematic examination of the whole lower genital tract and accurate, concise recording of the findings are required to produce the highest sensitivity and best positive predictive value for diagnosing high-grade abnormalities, as well as determining if treatment is required and planning the most appropriate mode, timing and extent of therapy.

In the renewed National Cervical Screening Program (NCSP) colposcopists are required to submit data from diagnostic and therapeutic colposcopy to the National Cancer Screening Register (NCSR). In return, they will receive data directly from the NCSR to enable them to review their own performance against defined benchmarks. These data can then be submitted to fulfil requirements for recertification in colposcopy. The Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG) will manage the certification and recertification processes for colposcopists. In the renewed program, the annual performance report prepared by the Australian Institute of Health and Welfare (AIHW) will include colposcopy data.

This chapter contains recommendations about the performance of colposcopy and related treatments. It is not intended to replace supervised training in accredited centres, nor attendance at colposcopy training and update courses, but offers guidance as to the minimum standards expected of a colposcopist providing services to the NCSP.
Colposcopy terminology

2011 International Federation for Cervical Pathology and Colposcopy (IFCPC) nomenclature

The terminology surrounding the clinical reporting of colposcopic examinations has continued to evolve, reflecting the improved understanding of cervical oncogenesis and the normal and abnormal appearances of the cervix. It is timely to review the current terminology used in Australia and align it to internationally accepted standards.

In Australia, the current commonly used nomenclature is the terminology recommended by the International Federation for Cervical Pathology and Colposcopy (IFCPC) in 2002.

In 2008, IFCPC formed a nomenclature committee to review the previous IFCPC terminologies (1975, 1990 and 2002) and publications that critically analysed each colposcopic sign, aiming to create an evidence-based terminology. The committee, chaired by Jacob Bornstein, was composed of 13 colposcopists from different countries and one pathologist from Australia. After an exhaustive and transparent process the final terminology was reviewed and approved by all committee members, the IFCPC board and the IFCPC general assembly held at the World Congress in Rio de Janeiro in July 2011.

As the representative body of the national societies for colposcopy and cervical pathology, the IFCPC recommended that the 2011 terminology replace all other terminologies and be implemented without delay for diagnosis, treatment and research. It is recommended that the 2011 IFCPC terminology (see the following section) should be used in Australia and replace other terminology.

PRACTICE POINT

REC7.1: New colposcopy terminology

The new terminology adopted by the IFCPC in 2011 should be incorporated into Australian practice.

SUMMARY OF IFCPC COLPOSCOPIC TERMINOLOGY OF THE CERVIX

GENERAL ASSESSMENT

The colposcopist should assess and record the following:

- **adequate/inadequate:** records whether the cervix has been visualised or not and includes the reason if inadequate (e.g. vaginal stenosis, cervix obscured by inflammation, bleeding, scarring)
- **squamocolumnar junction visibility:** this refers to the internal margin of the TZ that is either completely visible, partially visible, or not visible
- **TZ should be classified as Types 1,2,3 according to the visibility of all or part of the upper limit of the squamocolumnar junction:**
 - **Type 1** – the whole TZ including all the upper limit is ectocervical
 - **Type 2** – the upper limit of the TZ is partly or wholly visible in the canal and is completely visible around 360 degrees
 - **Type 3** – part or the entire upper limit of the TZ cannot be seen in the canal. In Type 3 TZ the outer limit may be visible on the ectocervix, in the canal or also not visible (Figure 7.1).
Normal colposcopic findings

The colposcopist should assess the following:

- Identify the outer limit of the original squamo-columnar junction.
- Identify the columnar epithelium, and upper limit of the TZ.
- Look for and note the following normal findings: ectopy, metaplastic squamous epithelium (mature or immature), nabothian cysts, crypt (gland) openings, deciduosis in pregnancy or atrophy.

Abnormal colposcopic findings (after application of acetic acid)

Aceto-white changes:

- Minor (Grade 1)
 - thin aceto-white epithelium; irregular geographic border
 - fine mosaic, fine punctuation
- Major (Grade 2)
 - dense aceto-white epithelium, rapid appearance of aceto-whitening, cuffed crypt (gland) openings
 - coarse mosaic, coarse punctuation, sharp border, inner border sign, ridge sign

Suspicious for invasion

Atypical vessels

- additional signs (suspicious for invasion): fragile vessels, irregular surface, exophytic lesion, necrosis, ulceration (necrotic), tumour/gross neoplasm suspicious for invasion

Lugol’s staining (Schiller’s test) if performed:

- stained/non-stained

Location of the lesion:

- Is this inside or outside the TZ?
- location of the lesion by clock position

Size of the lesion:

- number of cervical quadrants the lesion covers
- size of the lesion (as percentage of cervix)

Miscellaneous findings

- Stenosis (partial or complete), congenital anomaly, post treatment consequences, endometriosis, congenital TZ, condyloma, polyp (ectocervical/endocervical) inflammation.

Excision treatment types

This includes stratification and measurement of treatment excision specimens (Australian modification of IFCPC excision nomenclature).

Excision treatment by whatever mode defined by the length of cervical tissue excised as:

- Type 1 < 10 mm
- Type 2 > 10 mm and < 15 mm
- Type 3 > 15 mm

(See Treatment.)

Note: This stratification is modified from that of the IFCPC (2012) because, traditionally in Australia, excision specimens are measured using two diameters (anterior to posterior; 12 to 6 o’clock, and side to side; 3 to 9 o’clock) and length (external os to endocervical margin).

References

Principles of practice

Colposcopy should be conducted:
• in appropriate surroundings
• with properly functioning diagnostic and therapeutic equipment
• by adequately trained personnel.

Patient information should be provided (see Supplement. Colposcopy information for discussion with patient):
• before or during the first colposcopy consultation
• after a treatment
• in a culturally and linguistically appropriate format.

Results of any procedure or treatment should be communicated in a timely fashion. Non-attendance should be documented and minimisation strategies implemented.

History, examination and investigation

HISTORY
History taking at a colposcopy consultation should be relevant, concise and accurately recorded.

Minimum clinical history
The colposcopist should obtain and record the following information:
• primary reason for referral (usually from referring healthcare professional), e.g. abnormal screening test, post-coital bleeding, abnormal cervical appearance or other
• screening history, previous colposcopies and treatments
• parity
• menstrual history or any abnormal bleeding
• past gynaecological history including history of sexually transmitted infections (STIs)
• past medical and surgical history with particular reference to immune-deficiency due to disease or treatment
• current medication and allergies
• smoking/tobacco use, current status
• HPV vaccination status
• relevant family history including diethylstilboestrol (DES) exposure.

EXAMINATION
The colposcopist should perform a systematic examination of the lower genital tract, including the cervix, vagina, vulva, perineum and perianal area.

Macroscopic
After visual inspection of the vulva, perineum and perianal skin, the cervix should be identified using a bivalve speculum, and observed with the naked eye and then with the colposcope. The vagina can be inspected through the entire length on slow removal of a partially open speculum.

Colposcopic
Cervix
The cervix should be examined under low-power magnification prior to application of acetic acid to:
• exclude clinical invasive disease
• note presence of inflammation, infection or atrophy.

Dilute acetic acid (3–5%) is applied to the cervix allowing for typing of the TZ and to determine the extent and degree of any abnormality.
PRACTICE POINT

REC7.2: Colposcopy and acetic acid
Acetic acid should be applied for 2 minutes to allow sufficient time for aceto-white changes to become apparent. This is especially important when the lesion is low grade as it may take more time to become visible.

Application of aqueous iodine (Lugol’s or Schiller’s solutions) before or after biopsy may assist in defining the external limits of the TZ and any vaginal extension or separate lesions. Iodine can be applied to outline the TZ at the examination preceding therapy, and this is particularly useful when there is vaginal extension of the TZ.

Remainder of lower genital tract (vagina, vulva, perineum & perianal area)
The vulva, perineum and perianal skin should be inspected and any abnormality noted. The upper vagina should be assessed at all colposcopies to avoid missing extension of cervical dysplasia or isolated lesions of vaginal intra-epithelial neoplasia (VAIN).[1]

PRACTICE POINT

REC7.3: Colposcopy and VAIN
When the LBC report predicts a squamous abnormality and there is no colposcopically visible cervical lesion, careful colposcopic examination of the vagina should be performed to exclude VAIN, using acetic acid and Lugol’s iodine.

Anus and anal canal
Women who are diagnosed with cervical dysplasia or are immune-deficient are at increased risk of anal intra-epithelial neoplasia (AIN) and anal cancer. Anoscopy, its findings and subsequent management is outside the scope of this document. It is usually practised by specially trained colposcopists, sexual health physicians or colorectal surgeons.[2]

INVESTIGATIONS

Cytology
It is not necessary to take a cervical sample for LBC at the time of colposcopy, except in exceptional circumstances outlined below.[3][4]

PRACTICE POINT

REC7.4: Repeat LBC usually not necessary at time of colposcopy
It is not necessary to take a cervical sample for LBC at the time of colposcopy except in the following circumstances:

- delay in attending for colposcopy > 3 months after referral LBC
- referral LBC is unsatisfactory
- referral LBC is negative but lacks an endocervical component
- prior LBC is not available because the HPV test was performed on a self-collected sample
- the woman has developed symptoms suggestive of cervical cancer since undergoing her screening test
Biopsy

The colposcopically directed biopsy should be taken from the most abnormal area of the cervix. There is evidence that, in larger lesions, the higher-grade abnormality will be more centrally placed, that taking more than one biopsy will detect more high-grade disease and that taking random four-quadrant biopsies has the highest sensitivity for detecting cervical intraepithelial neoplasia (CIN) grade 2 or higher (CIN2+). However, the random four-quadrant biopsy technique will cause more discomfort, is not usual practice and is not acceptable to the majority of women.

In general, biopsy of abnormal areas should be encouraged, but many experienced colposcopists do not always biopsy a lesion that appears to be low grade, especially in young women, when the referral cytology predicts pLSIL/LSIL. For less experienced colposcopists, biopsy of a suspected low-grade lesion is appropriate to confirm the diagnosis and exclude high-grade abnormalities. Adjunctive technologies may assist in identifying the most abnormal areas but these are not widely used in Australia at this time (see Supplement. Colposcopy technologies and documentation).

<table>
<thead>
<tr>
<th>CONSENSUS-BASED RECOMMENDATION*</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.5: Biopsy of high grade lesions</td>
</tr>
<tr>
<td>The cervix should be biopsied when the LBC prediction is pH SIL or HSIL and the colposcopic appearance shows major change (see IFCPC definition above) and the abnormal TZ is visible (Type 1 or Type 2 TZ).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRACTICE POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.6: Biopsy visible lesion if suspicious for invasion when T3 TZ colposcopy</td>
</tr>
<tr>
<td>In some situations, when there is a visible high-grade lesion on the ectocervix but there is a T3 TZ (lesion extends into canal out of visual range), it may be reasonable to take a cervical biopsy of the visible lesion if there is any suspicion of superficially invasive or invasive carcinoma.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRACTICE POINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC7.7: Biopsy of low-grade lesions is encouraged but not always necessary</td>
</tr>
<tr>
<td>Women with a LBC prediction of pLSIL or LSIL and a colposcopic impression of low-grade disease or less may not always require a biopsy. However, biopsy is accepted practice for confirmation of the colposcopic impression and exclusion of high-grade disease, and should be encouraged, especially for less experienced colposcopists.</td>
</tr>
</tbody>
</table>

Endocervical curettage

Endocervical curettage (ECC) as an outpatient investigation is practised frequently in the USA and rarely in Australia. There is a lack of evidence to support its routine use in clinical practice.[10] There is a lack of prospective studies evaluating the utility of ECC performed at the time of diagnostic colposcopy. However, the findings of a recent retrospective study[11] suggest that ECC may be useful in predicting cervical cancer. The study included 455 women who had ECC at the time of colposcopy for an incompletely visible endocervical lesion, atypical glandular cells on smear or discrepancy between colposcopic impression and cytological abnormality.

The ECC was performed by two expert colposcopists who used a Kevorkian curette to sample four endocervical quadrants. They analysed the reliability of ECC in detecting high-grade CIN (CIN2/3) and cervical cancer, and concluded that ECC had a high sensitivity in the diagnosis of endocervical pre-cancerous lesions and cancer. ECC resulted in a diagnosis of cancer in 96% of cases, either directly from the analysis of ECC tissue or from that of the cone biopsy made necessary by the ECC findings of a pre-cancerous lesion. They also concluded that, in some situations, a negative ECC could safely allow a period of surveillance and reduce the number of unnecessary treatments. The authors recognised that, because they were very experienced colposcopists, it may not be possible to extrapolate their results to all colposcopists.

It is possible, despite a lack of evidence, that ECC could be used in Australian practice, particularly when there is a discrepancy between referral LBC prediction (low-grade squamous intraepithelial lesion (LSIL), possible high-grade squamous intraepithelial lesion (pHSIL), or high-grade squamous intraepithelial lesion (HSIL)) and colposcopy in the presence of a Type 3 TZ. ECC may provide reassurance that there is no significant endocervical lesion and that an immediate diagnostic excision could be deferred and be replaced by short-term surveillance.
Imaging

Women are referred for evaluation of abnormal glandular cytology, especially those with atypical glandular cells or endocervical cells of undetermined significance, may not always have a detectable lower genital tract abnormality. In this situation, imaging of the upper genital tract could be performed. Imaging may detect gross disease of the fallopian tube, ovary and of the endometrium in postmenopausal women, as these sites may be giving rise to the abnormal glandular cells. Further investigation, such as endometrial sampling, to exclude an endometrial origin for atypical glandular cells, may be required.

However, in the renewed NCSP, LBC is only carried out following a positive oncogenic HPV test result. Therefore, the detection (via the screening episode) of abnormal glandular cells from extra-cervical sites will be reduced, given that endometrial, tubal and ovarian pathology is not HPV-related. However, such abnormal glandular cells could be present coincidentally, unrelated to the positive oncogenic HPV test result (see Chapter 11. Management of glandular abnormalities).

PRACTICE POINT

REC7.8: Upper genital tract imaging

Upper genital tract imaging should be considered in cases where no lower genital tract abnormality is detected at colposcopy after referral with abnormal glandular cytology (including atypical glandular cells or endocervical cells of undetermined significance). In some women, further investigation, such as endometrial sampling to exclude an endometrial origin for atypical glandular cells, may be required.

DOCUMENTATION

High-quality patient management requires meticulous documentation of the woman’s medical record. The results of consultations, examinations and treatments must be recorded – preferably electronically, as this will facilitate the submission of colposcopy data to the National Cancer Screening Register (see Colposcopy data required for the National Cancer Screening Register). It is useful to keep an annotated diagram of the cervix and vagina or keep a digitally captured image.

References

Treatment

THE DECISION TO TREAT
Women should understand the indication for treatment. Information regarding the procedure and potential complications should be given and consent obtained.

Most treatments can be completed under local anaesthesia as an outpatient procedure.

Obstetric and neonatal morbidity is associated with some treatment modalities and the aim is to ablate or excise the smallest amount of cervical tissue necessary to achieve clearance of disease.

CONSENSUS-BASED RECOMMENDATION

REC7.9: Colposcopy prior to treatment
All women should have an adequate† colposcopic assessment prior to treatment.

† adequate: the cervix is clearly seen (IFCC 2011 terminology)

CONSENSUS-BASED RECOMMENDATION

REC7.10: Histopathological confirmation prior to treatment
Treatment should be reserved for women with histologically confirmed HSIL (CIN2/3) or AIS, except for women requiring diagnostic excisional biopsy.

CONSENSUS-BASED RECOMMENDATION

REC7.11: Biopsy prior to ablative treatment
Women should have a cervical biopsy prior to any ablative treatment.

CONSENSUS-BASED RECOMMENDATION

REC7.12: Pathology review of discordant test results
For women who have had a colposcopy with significant discordance between the histopathology and the referral cytology, both specimens should be reviewed by a pathologist from at least one of the reporting laboratories who should then convey the results of the review to the colposcopist in order to inform the management plan.

PRACTICE POINT

REC7.13: Tertiary referral may be necessary
In some clinical situations, the woman should be referred to a more experienced colposcopist, a gynaecological oncologist, tertiary colposcopy clinic or gynaecological cancer centre:

- adenocarcinoma in situ
- abnormalities in pregnancy
- immune-deficient women
- women with multifocal lower genital tract disease.
Multidisciplinary/concordance consultation and meetings

In tertiary centres, a regular ‘concordance’ or multi-disciplinary team (MDT) meeting may be convened to review the pathology results and discuss the management of cases.[7]

PRACTICE POINT

REC7.14: Second opinion
When there is any concern about diagnosis or patient management, a second opinion should be sought and documented.

PRACTICE POINT

REC7.15: The role of multidisciplinary team review
It is not always practical for a colposcopist to access a multidisciplinary team review which is usually conducted in a tertiary referral centre. However, a multidisciplinary team review is particularly helpful when

- dealing with complex cases where there is discordance between histopathology and referral cytology (e.g. LBC prediction of HSIL, with negative or LSIL histology).
- implementation of treatment is not urgent and therefore it is possible to take the required time to review the findings and optimise the management plan.

TRAINING

All therapeutic colposcopists should have undergone approved, recognised and supervised training and have demonstrated competence in the therapy/therapies that they use.

MODALITIES OF TREATMENT

PRACTICE POINT

REC7.16: Colposcopy at time of treatment
All treatments should be performed under colposcopic vision, with the exception of cold-knife cone biopsy.

Treatment is achieved by ablation of the abnormal tissue or the complete excision of the atypical TZ. The modalities currently used in Australia are:

- ablation – tissue destroyed by an energy source
 - CO₂ Laser
- excision – tissue excised by surgery using a scalpel or energy source
 - cold-knife (scalpel) cone biopsy
 - electrosurgery
 - large loop diathermy; loop electrosurgical excision procedure (LEEP) or large loop excision of the TZ (LLETZ)
 - fixed profile rotating excision (Fisher cone or Utah type)
 - fine needle/wire; straight wire excision of the TZ (SWETZ) or needle excision of the TZ (NETZ)
 - CO₂ laser cone.

Cryotherapy and thermal coagulation are not currently used in Australia (see Supplement. Colposcopy technologies and documentation).

The amount of cervical tissue to be ablated or excised should be determined by:

- the Type of TZ
- the size and extent of the lesion
- the known or suspected final histology.

NOTE: Ideally, the planned depth of ablation/excision should be recorded and where possible, the extent of the ablation/excision should be measured.
Ablation

CONSENSUS-BASED RECOMMENDATION

REC7.17: Criteria for ablative treatment
Ablative therapy should be reserved for women intending to have children, and when the following conditions have all been met:
- TZ is completely visible (Type 1 or Type 2).
- There is no evidence of invasive or glandular disease.
- A biopsy has been performed prior to treatment.
- HSIL (CIN2/3) has been histologically confirmed.
- There is no significant discordance between the histopathology and referral cytology results.

PRACTICE POINT

REC7.18: Depth of ablation
A Type 1 TZ with a HSIL (CIN2/3) lesion requires 6–8 mm (and not more than 10 mm) of cervical ablation to be adequately treated.

Carbon dioxide (CO₂) laser ablation
CO₂ laser ablation is usually practised in tertiary centres where a clinical CO₂ laser is available. Laser ablation is usually performed as an outpatient procedure under local anaesthesia.[10]

Excision
Excisions are stratified as Types 1, 2 or 3, according to the length of cervical tissue excised. It is important to establish the stratification of the excision type and, as Australian pathologists do not routinely use the measurements specified by the IFCPC, a modification of the IFCPC definition has been suggested.

Treatment types are defined below (modified from the IFCPC):[11]
- **Type 1 excision (for Type 1 TZ)**: usually to 8 mm and not more than 10 mm length of cervical tissue excised
- **Type 2 excision (for Type 2 TZ)**: not more than 15 mm length of tissue excised
- **Type 3 excisions (for Type 3 TZ)**: equivalent to ‘cone biopsy’ and > 15 mm length. Should be used for women with:
 - suspected invasive disease
 - proven or suspected glandular disease
 - Type 3 TZ with proven or suspected high-grade disease.

The specimen should be removed in one piece. Specimens in two or more pieces may create difficulties in histological assessment, particularly in the interpretation of margins, completeness of excision and the evaluation of invasive disease. This is very important if AIS is predicted or histologically confirmed.

However, in women who have a very large ectocervical TZ, it may be necessary to remove the TZ in two pieces. This should rarely be required and is an unusual situation. It is important that the endocervical and stromal margins are suitable for pathological interpretation, that the specimens are accurately orientated and labelled and that the whole lesion is removed.

CONSENSUS-BASED RECOMMENDATION

REC7.19: Excision specimen quality and pathology
Excisional therapy should aim to remove the entire TZ with a pre-determined length of cervical tissue, ideally in one piece, with minimal distortion or artefact to the final histological specimen.[1]

† This is critical for management of suspected or histologically confirmed AIS.
PRACTICE POINT

REC7.20: Excision specimen quality, pathology and very large ectocervical lesion
A very large ectocervical lesion may require removal in two pieces in order to remove the entire lesion. It is still important that the endocervical and stromal margins are suitable for pathological interpretation and that the specimens are accurately oriented and labelled.

PRACTICE POINT

REC7.21: Excisional techniques and surgical competency
Therapeutic colposcopists should use the excisional techniques with which they are comfortable and competent and that produce the best histological specimen.

Cold-knife cone biopsy
Historically, cold-knife cone biopsy has been the recommended procedure in suspected cases of glandular disease and invasion. Current evidence indicates that it carries the best rates of single specimens and achieved length > 15 mm (Type 3 excision), but it has higher reported rates of short-term and long-term complications including primary haemorrhage and subsequent pre-term labour, when compared with other excisional modalities. However, a meta-analysis reported that all excisional procedures used to treat cervical intraepithelial neoplasia seem to be associated with adverse obstetric morbidity. Loop diathermy excisions (LEEP or LLETZ) that remove large amounts of cervical tissue probably have the same effect as cold-knife cone biopsies. Given the design of published observational studies, observed differences in perinatal mortality and severe premature delivery, in treated versus non-treated women, cannot be ascribed solely to treatment.

PRACTICE POINT

REC7.22: Cold-knife cone biopsy: setting
Cold-knife cone biopsy should be performed in an operating theatre, under general anaesthesia, by a gynaecological oncologist or gynaecologist competent in the technique.

Loop diathermy (LEEP or LLETZ)
Loop diathermy (LEEP or LLETZ) is the most commonly used therapy for CIN in resource-rich countries. Disposable loops are available in a wide variety of profiles and sizes (Figure 7.2). The loop should be chosen after colposcopy preceding therapy to meet the width of the TZ and the planned type (length) of excision.

In Australia it has been reported that this technique frequently results in fragmented specimens with excessive thermal artefact. Published studies from other countries do not report the same rates of problems with loop diathermy, suggesting that this is a local training and performance issue. Diathermy settings should be significantly higher than used in most open or laparoscopic surgeries to reduce thermal artefact (this should be minimised to 0.2 mm). It is imperative that the clinician obtain the recommended power settings from the electrosurgical system manufacturer. It should be noted that each clinician will have a personal preference (to suit their surgical technique, loop size, speed of excision and other factors) that determine their personal ‘best settings’ for electrosurgical procedures. Extensive application of coagulation current should be avoided, especially at the endocervical margin, which rarely bleeds.
Figure 7.2. Examples of loops

PRACTICE POINT

REC7.23: Loop excisional biopsy technique (LEEP/LLETZ)
A single pass of the loop (side to side or posterior to anterior) to produce a specimen in one piece is optimal.

PRACTICE POINT

REC7.24: Loop ‘top-hat’ excisions should be avoided (LEEP/LLETZ)
The ‘top-hat’ excision techniques using a wire loop, in which a second piece of endocervical tissue is removed after the first excision, is not an alternative to a properly performed single-piece Type 3 excision, and should be avoided.

Profiled electrosurgical excision

There are several patented profiled devices for a rotational excision (Fisher, Utah, etc) that come in different sizes/lengths (Figure 7.3).[15] These are inserted into the cervix under power, usually anteriorly (12 o’clock) and rotated through 360 degrees. They have the advantage of being easy to use, but have the thermal artefact disadvantage of diathermy-based techniques.[14] These devices usually provide a one-piece specimen, but the initial entry incision renders an opened cone that may distort during fixation and require a different pathological management to single-piece closed loop and knife cones.

Laser cone biopsy

Laser Cone Biopsy was introduced in the 1980’s after it was realised that widespread use of laser ablation might be resulting in the under diagnosis of micro-invasive disease. It can be practised under local anaesthesia in adequately equipped rooms or outpatients as well as in operating theatres, but requires considerable skill in balancing the laser’s ability to cut and coagulate.[12] It can produce more thermal artefact than correctly set diathermy techniques and takes significantly longer to perform than LEEP/LLETZ. It is rarely performed now.

Diathermy point/needle excision: straight wire excision of the TZ (SWETZ) and needle excision of the TZ (NETZ)

Type 3 excisions can be achieved using cutting diathermy with a straight or angled needle (NETZ)[18] or straight wire (SWETZ)[17] in the same fashion as using a scalpel. Bleeding is less than with cold-knife cone biopsy but thermal artefact can be greater than with loop or profiled excisions. Scarring and the risk of stenosis are greater than with loop diathermy or cold-knife excisions.

SPECIAL TREATMENT CONSIDERATIONS

Treatment of endocervical adenocarcinoma in situ (AIS)

Women with a proven glandular abnormality who wish to retain their fertility should be treated with local excision and some colposcopists will also perform a post-excision endocervical curettage at the time of the excision.[18] A woman presenting with a definite high-grade glandular abnormality on cytology has a 24% or greater chance of having invasive adenocarcinoma in the excision specimen.
A Type 3 excision is usually performed, most commonly by cold-knife cone biopsy in Australia. There are recent retrospective reports, including one from Western Australia, showing satisfactory management with large loop diathermy, which is also widely practised overseas. However the authors concluded that further prospective studies were needed to confirm their findings. The shape of the excision is not usually described as a true cone but a cone on top of a cylinder. The initial incision is perpendicular to the external cervical surface to ensure the excision of glands originally exposed in the post-menarche TZ now overlain by mature squamous metaplasia. There is evidence that in women under 35 years of age a more conservative Type 2 excision can be offered initially, as long as the woman is counselled about the possibility of repeat therapy. Any incomplete margin will require a repeat excision. Because of the acceptance of the concept of ‘skip’ lesions it has been practice to try to achieve an endocervical clearance of a minimum of 5 mm.

Superficially invasive squamous cell cancer (SISCCA)

Women diagnosed as FIGO Stage IA1 squamous carcinoma after local excision do not require further excision if the following criteria are satisfied:

- The margins are clear of CIN and invasive disease.
- There is no evidence of lymphovascular space invasion.
- The case has been reviewed by a gynaecological pathologist and discussed at a gynaecological oncology multidisciplinary meeting.

PRACTICE POINT

REC7.26: Role of repeat excision in management of SISCCA

In the presence of a superficially invasive squamous carcinoma, if HSIL (CIN2/3) extends to any excision margin, a repeat excision (usually by cold-knife cone biopsy) is recommended.
TREATMENT AT FIRST VISIT

There is evidence that treatment at the first visit can reduce overall levels of anxiety in women with cervical abnormalities, but anxiety may be increased if they are not adequately informed of the potential for treatment at their first visit.

Most women do not need to consider this option. It is recommended that women should have an adequate colposcopic assessment and a colposcopically directed biopsy at the first visit. This will provide histological confirmation of the colposcopic impression and inform the need for definitive treatment that is usually performed at a later date.

The indiscriminate practice of treatment at first visit (“see and treat”) has in the past led to an excessive number of unnecessary treatments, especially when the referral cytology is pLSIL/LSIL and the diagnostic colposcopist thought there was a higher grade lesion but this was not confirmed on final histopathology. This approach should be avoided in light of increased awareness of the potential complications of treatment.

A recent systematic review and meta-analysis included 13 studies that considered the rate of ‘over-treatment’ for women with various referral cytology results. Overall rates of over-treatment were 11.6% in women with high-grade cervical cytology and high-grade colposcopic impression, 29.3% in women with high-grade cervical cytology and low-grade colposcopic impression, 46.4% in women with low-grade cytology and high-grade colposcopic impression, and 72.9% for women with low-grade cytology and low-grade colposcopic impression. The authors recommend that ‘see and treat’ is reasonable only if the referral cytology and the colposcopic impression are both high grade.

In the Australian context it may be appropriate to consider treatment, which is almost always excisional, at the first visit. Women may face logistical problems attending for appointments, especially if they live a considerable distance from the colposcopy clinic or private rooms. Some anxious women request that treatment is performed at the first visit so that the diagnostic and treatment process is not prolonged.

Women for whom treatment at the first visit is being considered should satisfy the following criteria:

- Referral cytology predicts HSIL.
- Colposcopic impression is high-grade disease.
- TZ is completely visible (Type 1 or 2).
- Invasive cancer has been excluded.
- The lesion is suitable for treatment under local anaesthetic.

PRACTICE POINT REC7.27: Do not treat at first visit with a LBC report of a low-grade lesion

Women who have a LBC prediction of pLSIL/LSIL should not be treated at the first visit.

REPEAT TREATMENT

Recurrence may occur after an ablative or excisional procedure. If, after an excisional procedure, the HSIL (CIN2/3) extends to the endocervical (deep) or stromal (lateral) margins of the specimen, there will be a higher incidence of recurrence, but not high enough to justify routine repeat excision, in the absence of glandular or invasive disease.

However, women aged 50 years and over with involved margins or women in whom adequate subsequent colposcopic examination and follow up cytology cannot be guaranteed, should be offered repeat excision and, in some cases, hysterectomy.

PRACTICE POINT REC7.28: Excision required for recurrent disease after ablation

If there is recurrence of high-grade disease after previous ablation, treatment should be by excision.
PRACTICE POINT

REC7.29: Repeat excision not necessarily required for incomplete excision of high-grade lesions

Women who have incomplete excision of HSIL (CIN2/3) with positive endocervical or stromal margins do not necessarily require immediate repeat excision and could be offered test of cure (HFV and LBC) surveillance, with the exception of:

- women aged 50 years or over
- women who may not be compliant with recommended follow-up
- women in whom subsequent adequate colposcopy and follow-up cytology cannot be guaranteed.

References

References continued

Colposcopy data for the National Cancer Screening Register

The renewed NCSP requires all colposcopists to report a minimum data set to the National Cancer Screening Register (NCSR). A colposcopy subgroup of the NCSP Quality and Safety Monitoring Committee has defined the minimum data set required as part of the Quality Framework for the NCSP.

Quality improvement in colposcopy

The NSCP Quality and Safety Monitoring Committee has developed a Quality Framework that includes quality standards and targets for individual diagnostic and therapeutic colposcopists.

DIAGNOSTIC AND THERAPEUTIC COLPOSCOPISTS

Diagnostic and therapeutic colposcopy has been practised in the absence of any organised quality assurance program since before the commencement of the NCSP in 1991. Within the pre-renewal NCSP, colposcopy is the only screening program element not included in quality assurance monitoring. The NCSP Quality Framework, currently under development, includes the following statements:

1. Colposcopic assessment should be performed in a timely manner to ensure the safety of women at risk of cervical cancer precursors.
2. Women who are diagnosed with cervical cancer are appropriately referred to a certified gynaecological oncologist or gynaecological cancer treatment centre for further assessment and/or treatment.
3. Women are appropriately treated and returned from colposcopic surveillance to routine screening in accordance with the clinical management guidelines.

4. The therapeutic colposcopist adequately informs the woman and her usual cervical screening test collector of any follow-up that may be required in accordance with the clinical management guidelines.
5. The quality of the colposcopic and therapeutic assessment procedures is regularly assessed. It is expected that all colposcopists (diagnostic and therapeutic), who provide services to the NCSP, will participate in a cervical management quality assurance program (CM-QAP). Quality standards for diagnostic colposcopists have been developed by the NCSP to provide guidance for individual performance review.
6. Colposcopists provide the National Cancer Screening Register with data in accordance with the minimum dataset.
7. The National Cancer Screening Register provides colposcopists with individual performance data benchmarked to national standards for quality improvement and certification purposes.
Supplement. Colposcopy information for discussion with patient

PATIENT INFORMATION

Most women attending for a colposcopy consultation have significant anxiety in advance of the appointment (see Chapter 19. Psychosocial care). This is often related to uncertainty about the diagnosis and possible treatment, but may reflect concern regarding the approaching gynaecological (colposcopic) examination. Colposcopists should take measures to alleviate these anxieties while protecting each woman’s dignity and privacy. A Cochrane review of interventions to reduce anxiety in women undergoing colposcopy, which included six randomised controlled trials, found that music during colposcopy significantly reduced anxiety levels and pain during the procedure.

Effective information and communication is essential for all women. There is good evidence that accurate and well-presented information improves women’s experience of colposcopy and reduces anxiety. Women may not remember all of the verbal information given at the time of consultation or treatment and, ideally, written information should be available where appropriate.

Ideally, women should be given relevant information at the time of cervical screening and before colposcopy. Most hospital colposcopy clinics and many colposcopists will have their own information pamphlets or leaflets. Information is also available from proprietary sources (usually free of charge) or from the the Commonwealth and state- and territory-based programs of the National Cervical Screening Program (NCSP).

Questions that women may ask include the following:

- What do my test results mean?
- Do I need more tests and if so, why?
- What treatment do you advise and why?
- Are there any other options?
- Will I need time off work?
- Will I be able to drive myself home after my treatment?
- Will there be bleeding or vaginal discharge after treatment?
- How often will I need to come back to see you?
- When is my next checkup due?
- Is there anything I can do to help myself in the future?
- Can you give me some information about HPV?
Prior to the first visit for colposcopy
Written information sent to the woman should include:

- a basic description of the causes of cervical pre-cancer and cancer and the relationship to HPV infection.
- a list of the grades of abnormality that are reported in the screening test results and a brief explanation of what they mean.
- a description of the colposcopic examination and possible biopsy
- the potential outcomes of the colposcopic assessment, including commonly used treatment modalities.

At the time of the colposcopy consultation
Colposcopists should be sensitive to the psychophysiological needs of individual women undergoing colposcopy:

- Matching intra-procedural information with different coping styles reduces psychophysiological disturbance in women undergoing colposcopy.[9]
- Check that the woman did receive the pre-visit information. If not, she can read it while waiting for her consultation.
- Remind the woman about the technique of colposcopy and the possible need for a cervical biopsy
- During the examination keep her informed as to what can be seen and what is happening and especially if and when a biopsy is taken.
- If a video-colposcopy is available and the woman wishes to watch the colposcopic image, this should be encouraged but be aware that in some women this can cause anxiety.
- Following the examination and if a biopsy has been performed, the woman should be given clear advice regarding the transient occurrence of mild pelvic discomfort and vaginal ‘spotting’ and should be advised to avoid sexual intercourse for a few days.
- If a biopsy has been taken she should be given clear instructions, preferably in writing, as to how she will obtain the results of the biopsy.
- Prior to leaving the consultation visit, particularly if it appears likely that she will require treatment, the woman should be given verbal and written information about any potential treatment procedures and their complications that may affect her consent to be treated.
- If treatment is not likely but she needs a follow-up visit or needs to see her GP, this information should be clearly articulated and should be confirmed in writing.

At the time of a treatment visit
The colposcopist should:

- confirm that the woman understands and consents to treatment
- if colposcopy is done under local anaesthesia, keep the woman informed about the procedure in real time
- after the procedure, ensure that the woman is given verbal and written information about potential common complications, especially bleeding and infection and what she should do if they occur. This should be reinforced by written information, including advice as to how the pathology results of any treatment will be obtained.
- provide information about necessary follow-up after treatment.

Post treatment
Information should include the following advice:

- Some women experience abdominal cramps after treatment. This can feel like a painful period. It is also normal to have a dark or watery vaginal discharge for up to 4 weeks. This may include the passing of small clots while the cervix heals.
- Avoid using tampons for 4 weeks after treatment.
- Abstain from sexual intercourse for 4 weeks after treatment.
- Avoid strenuous exercise or swimming for 10–14 days after treatment.
- Some women may have temporary alteration in menstrual pattern after an excisional treatment, including heavier and more painful flow in the subsequent period.

Note:
Culturally and linguistically appropriate information should be available for Aboriginal and Torres Strait Islander women and women who speak a language other than English, preferably in their first language.[10] However, it is often not possible for written information to be available in all languages. Women should be offered access to interpreter services when required. Information on interpreter services can be accessed from Translating and Interpreting Services.
References

Supplement. Colposcopy technologies and documentation

ADJUNCTIVE TECHNOLOGIES

A number of modern technologies based on spectroscopy and electrical impedance can be used in practice to increase the sensitivity, positive predictive value and specificity of colposcopy, including LuViva, DySIS and ZedScan.[1] Of these, only ZedScan is registered with the Therapeutic Goods Administration and is undergoing evaluation in Australia. These are not commonly used in Australia.

MODALITIES OF TREATMENT

NOT COMMONLY USED IN AUSTRALIA

Cryotherapy

This is not recommended in resource-rich countries, where alternative treatment modalities exist, as the rate of clearance of HSIL (CIN3) is poor and the persistence or recurrence of HSIL (CIN2/3) is higher than with other techniques. When used for the treatment of a symptomatic inflamed ectropion or persistent low-grade disease, a double-freeze technique is preferred, and has lower rates of residual disease compared with a single-freeze technique.[2][3] It is rarely, if ever, used in Australia.

Thermal Coagulation (Semm or ‘Cold’ coagulation)

The thermal coagulator is a self-contained electrically powered device which works with a probe at 60–130 degrees Centigrade (it was known as ‘cold’ because it works at lower temperature than diathermy). The probe, which comes with half a dozen different profiles, goes through a self-sterilising cycle before being applied directly to cervix in 20-second applications that can be multiply repeated to cover the whole TZ. Studies have confirmed its efficacy in benign, low and high-grade abnormalities.[4][5] There is currently a resurgence of interest in using this modality in Europe, and in future it may be promoted in Australia.

DOCUMENTATION

High-quality patient management requires meticulous documentation of the woman’s medical record. The results of consultations, examinations and treatments must be recorded, preferably electronically to facilitate submission of colposcopy data to the NCSR. It is useful to keep an annotated diagram of the cervix and vagina or take a digitally captured image. The minimum colposcopy data set should always be recorded.

Description of abnormalities should be in line with the 2011 IFCPC terminology (see 2011 International Federation for Cervical Pathology and Colposcopy (IFCPC) nomenclature). The following information should be included:

- the adequacy of the examination
- the absence (or presence) of evidence of invasive disease
- the presence of a squamous and/or glandular pre-cancerous abnormality
- the extent of the TZ, ectocervically and endocervically and hence the TZ Type; 1, 2, or 3. This should also clearly mention extension of abnormalities onto the vaginal fornices, if present.
- the number of cervical quadrants involved in any abnormality
- the overall colposcopic impression.

Colposcopic findings at the time of treatment should be recorded especially if there has been a change in appearance of the cervix. In addition the following should be included:

- the mode and technique of treatment
- the depth of tissue destruction achieved in all ablative treatments
- the type of excision: Types 1, 2 or 3
- the size of loop/fixed profile wire used in all LEEP/ LLETZ and Fisher/Utah conisation procedures and the diathermy settings
- the laser setting and length of time of application
- any complication occurring during or immediately following the treatment.
References

MANAGEMENT OF DISCORDANT COLPOSCOPIC IMPRESSION, HISTOPATHOLOGY AND REFERRAL LBC PREDICTION

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
Dr Andrea Garrett – Co-author
Professor Ian Hammond – Co-author
A/Professor Marion Saville – Co-author
Mr. C. David H. Wrede – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:
- Background
- Normal colposcopic findings following LBC prediction of LSIL or HSIL
- Type 3 TZ (unsatisfactory) colposcopy following LBC prediction of LSIL or HSIL
- Discussion
Management of discordant colposcopic impression, histopathology and referral LBC prediction

BACKGROUND
Various clinical scenarios may present difficulties for diagnosis and management when there is discordance between cytological and colposcopic or histopathological reports for women referred for colposcopic assessment on the basis of the results of human papillomavirus (HPV) testing and liquid-based cytology (LBC):

- A woman with a cytological prediction of a high-grade squamous intraepithelial lesion (HSIL) may have a normal colposcopy.
- Colposcopically directed biopsy may confirm a low-grade lesion after a cytological prediction of HSIL.
- A woman with a positive oncogenic HPV (any type) test result and a LBC report of negative, or prediction of a low-grade squamous intraepithelial lesion (LSIL) or HSIL, may have Type 3 transformation zone (TZ) colposcopy (previously termed ‘unsatisfactory’ colposcopy).
- A woman may have a positive oncogenic HPV (16/18) test result, a negative LBC report, and colposcopy that is either normal or Type 3 TZ.

The following clinical scenarios are considered in this chapter:

- Normal colposcopic findings following a LBC prediction of a low-grade or high-grade lesion (see also Management of women with histologically confirmed low-grade squamous abnormalities)
- Type 3 TZ (unsatisfactory) colposcopy following LBC prediction of a low-grade or high-grade lesion (see Summary of IFPCP colposcopic terminology of the cervix).

Normal colposcopic findings following LBC prediction of a low-grade or high-grade lesion

Guidelines for the pre-renewal National Cervical Screening Program (NCSP)(1) recommended the following management for women with normal colposcopy (Type 1 or Type 2 TZ):

- Women with normal colposcopy following a cytological prediction of LSIL should have annual cytological surveillance until two normal smears are obtained, and then resume routine screening according to the recommendation for the average population.
- Women with normal colposcopy following a cytological prediction of possible HSIL (pHSIL) should have a repeated Pap test and colposcopy 3–6 months later. If repeat colposcopy was normal, the Pap test was to be repeated in another 6–12 months.

In the context of primary HPV-based screening and reflex LBC, it is necessary to determine the following:

- the optimal follow-up protocol (HPV testing, LBC testing or co-testing, and interval) for women with a positive oncogenic HPV (any type) test result and a LBC report of pLSIL/LSIL, followed by normal colposcopy
- the safety and effectiveness of conservative treatment (follow-up testing with HPV and/or LBC) relative to diagnostic excision of the TZ in women with a positive oncogenic HPV (any type) test result and a LBC prediction of pHSIL/HSIL followed by normal colposcopy, when cytology is downgraded on cytopathology review
- the safety and effectiveness of conservative treatment relative to diagnostic excision of the TZ in women with a positive oncogenic HPV (any type) test result and a LBC prediction of pHSIL/HSIL (confirmed on review) but normal colposcopy.
Type 3 TZ (previously termed ‘unsatisfactory’) colposcopy following LBC prediction of a low-grade or high-grade lesion

Guidelines for the pre-renewal NCSP[1] recommended that, in cases where the colposcopic assessment was unsatisfactory (TZ not fully visible; Type 3 TZ in new IFPCP terminology)[2] in women with a cytological prediction of LSIL on a Pap test, the clinician should consider repeating the Pap test in 6–12 months. The guidelines recommended that failure to visualise the transformation zone in women with a cytological prediction of HSIL on a Pap test was an indication for diagnostic excision of the TZ.[1]

The American Society for Colposcopy and Cervical Pathology[3] recommends diagnostic excision of the TZ for women with cytological prediction of HSIL and unsatisfactory colposcopy, except during pregnancy. European guidelines for clinical management of abnormal cervical cytology[2] recommend diagnostic excision of the TZ should be considered for women with HSIL cytology and unsatisfactory colposcopy. Canadian guidelines for the colposcopic management of abnormal cervical cytology and histology[3] recommend that diagnostic excision of the TZ should be considered in this situation if endocervical curettage and/or biopsy results are negative.

In Australia endocervical curettage is not routinely practised (see Endocervical curettage in Chapter 7. Colposcopy and Chapter 11. Management of glandular abnormalities). The American Society for Colposcopy and Cervical Pathology[3] recommends endocervical sampling (either brushing or curettage) for women with a cytology report of atypical squamous cells of undetermined significance or LSIL when the entire squamocolumnar junction and the margins of any visible lesion cannot be visualised on colposcopy. European guidelines for clinical management of abnormal cervical cytology[2][3] recommend endocervical curettage after diagnostic excision of the transformation zone and excision of the lower third of the endocervical canal if the squamocolumnar junction is not visible and a high-grade cytological abnormality has been confirmed on cytopathology review.

In the context of primary HPV-based screening, it is necessary to determine the following:

- the optimal follow-up protocol (HPV testing, LBC testing or co-testing, and interval) to predict risk in the follow-up of women with a positive oncogenic HPV (any type) test result and a LBC prediction of pLSIL/LSIL, when Type 3 TZ (unsatisfactory) colposcopy is reported
- the safety and effectiveness of conservative treatment (follow-up testing with HPV and/or LBC) relative to diagnostic excision of the transformation zone in women with a positive oncogenic HPV (any type) test result and a LBC prediction of pHSIL/HSIL, when Type 3 TZ (unsatisfactory) colposcopy is reported and pHSIL/HSIL is confirmed at cytopathology review.

See:
- Normal colposcopic findings following LBC prediction of LSIL or HSIL
- Type 3 TZ (previously termed ‘unsatisfactory’) colposcopy following LBC prediction of LSIL or HSIL
- Discussion: Management of discordant colposcopic impression, histopathology and referral LBC prediction

References
EVIDENCE
Systematic reviews were conducted to answer the following questions:

- For women with a positive oncogenic HPV test result (not in treatment follow-up) with negative or LSIL cytology and normal colposcopy, what is the safety and effectiveness of 12-month follow-up testing with a HPV test alone, compared with co-testing?
- For women with a positive oncogenic HPV test result (not in treatment follow-up) with negative or LSIL cytology and normal colposcopy, which factors predict the presence of high-grade cervical neoplastic disease (CIN2, CIN3, cervical cancer, adenocarcinoma in situ (AIS) or cervical cancer mortality)?
- For women with a positive oncogenic HPV test result and pHSIL/HSIL referral cytology but pLSIL/LSIL or less after cytologic review, and colposcopy is normal (negative), what is the safety and effectiveness of conservative management compared with excision of the TZ?
- For women with a positive oncogenic HPV test result and pHSIL/HSIL referral cytology, confirmed pHSIL/HSIL after cytologic review, and colposcopy is normal (negative), what is the safety and effectiveness of cytological and colposcopic follow-up at 3–6 months, compared with excision of the TZ?

Outcomes for women with normal colposcopic findings following referral cytology prediction of LSIL

No randomised or pseudorandomised controlled trials were identified that compared HPV testing with co-testing (HPV and LBC) at 12-month follow-up for women with a positive oncogenic HPV (any type) test result, a cytology report of negative or LSIL and normal colposcopy, and which reported high grade-disease outcomes.

No studies were found that reported the risk of high-grade disease associated with follow-up cytology or HPV status.

Four studies reported the risks associated with referral cytology and/or HPV status for women reported as pLSIL/LSIL and normal (negative) colposcopic findings: two prospective cohort studies (level II evidence) and two retrospective cohort studies (level III-2 evidence) were identified. Follow-up ranged from 1 to 3 years. All four studies were considered at high risk of bias; none of the studies were specifically designed to answer the PICO question, so it was not clear as to whether women with different baseline cytology results or HPV status were similar in terms of important confounders such as smoking status. Furthermore, important study design aspects such as the potential blinded reading of subsequent colposcopies and histopathology (with respect to the baseline test status) were not described.

Two of the studies examined the risks of cervical intraepithelial neoplasia (CIN) grade 3 or higher (CIN3+) associated with different baseline cytology results, and one study examined the risks of CIN3+ associated with baseline HPV-positive ASC-US and LSIL (regardless of HPV status). Three studies examined the risks of CIN2+ disease associated with different baseline cytology results, of which one study examined the risks of CIN2+ associated with different baseline HPV status. Two studies reported the risks associated with baseline cytology results in women who were HPV positive.
One of these studies[^26] did not report HPV status. The remaining studies provided the following evidence:

- In a cohort of women with a positive oncogenic HPV (any type) test result with normal colposcopy after referral cytology reported as ‘borderline dyskaryosis’ or ‘mild dyskaryosis’, rates of later detection of CIN3+ (median follow-up 27 months) were 3.5% and 2.1%, respectively.[^3] This cohort may not be representative of women with a LBC prediction of pLSIL/LSIL identified after primary HPV testing in the renewed NCSP; the HPV test in this UK study used a higher cut-off than recommended, and the ‘borderline dyskaryosis’ group could have included women with pHSIL.

- In a cohort of women with a referral cytology report of LSIL and normal colposcopy, the rate of CIN3+ after 1 year follow-up was 4.0%.[^1] This cohort included women who tested HPV positive and women who tested HPV negative.

- In a cohort of women with a positive oncogenic HPV (any type) test result with normal colposcopy after referral cytology reported as ‘borderline dyskaryosis’ or ‘mild dyskaryosis’, rates of later detection of CIN2+ (median follow-up 2.6 years) were 6.2% and 12.9%, respectively.[^7]

The systematic reviews and their findings are described in detail in the Technical report.

As no studies were found that reported the risks of high-grade disease associated with follow-up cytology or HPV status, there was no directly relevant evidence on which to base an evidence-based recommendation. Detection of HPV, especially persistent HPV 16/18, is associated with an increased risk of high grade cervical lesions, and the HPV test is more sensitive than cytology (see Chapter 2. The rationale for primary HPV screening).

Outcomes for women with normal colposcopy following referral cytology prediction of HSIL

Systematic literature searches did not identify any studies directly addressing the management of women with HSIL cytology and a normal (negative) colposcopy. The search strategies and inclusion and exclusion criteria used are described in detail in the Technical report.

In the absence of any direct evidence from the systematic review, a general review of the literature was performed on the management of women with cytological prediction of pHSIL/HSIL and normal (negative) colposcopy was undertaken to inform relevant consensus-based recommendations.

No studies were found that reported outcomes for women followed up after referral cytology prediction of pHSIL/HSIL and normal colposcopic findings, and which reported the results of cytopathology review.

One cross-sectional cohort study[^11] reported outcomes for women participating in conventional cytology (Pap test) screening with no history of a cytological abnormality, who had a cytological prediction of HSIL between 2000 and 2007. Of 340 women who underwent colposcopy, 17 had normal colposcopic findings. Biopsy was performed in nine of these women, including endocervical curettage in at least four women.[^11] Ages of the women and results of cytopathology review (if performed) were not reported.

Of the 17 women with normal colposcopy (HPV status unknown), two (11.8%) were diagnosed with cervical adenocarcinoma and another two (11.8%) with AIS. Findings for the other 13 women were not reported. No other cases of cervical adenocarcinoma or cervical adenocarcinoma in situ were identified among the 331 women with HSIL who underwent biopsy.[^11] The degree to which these findings can be generalised to women in the renewed NCSP is limited, because HPV status and the findings of cytopathology review are not available.

Another retrospective cohort study[^15] reported outcomes for a subgroup of 59 women (mean age 26.8 years) who underwent a loop electrosurgical excision procedure (LEEP) after a cytological prediction of HSIL and a colposcopically directed target biopsy finding of no abnormality detected (n = 34) or CIN1 (n = 25). On excisional biopsy, histologically confirmed CIN3 was diagnosed in 14 (41%) women with normal target biopsy and 16 (64%) women with CIN1 on target biopsy. The degree to which these findings can be generalised to women in the renewed NCSP is limited, because HPV status was unknown and the study did not report whether HSIL was reported at initial referral cytology or on cytopathology review. However, this study did demonstrate the failure of colposcopically directed biopsy to detect the high-grade lesion in 41% of cases, as high grade abnormality was subsequently confirmed in an excision biopsy.[^15]

A summary of the literature considered can be found in the Technical report.

Overall, this body of evidence is insufficient to enable accurate prediction of risk in women with normal colposcopic findings despite a LBC report of HSIL.

In Australia, it is recommended that discordant findings between referral cytology and colposcopy warrant review of the cytology prior to further management decisions.

Current evidence does suggest that, in women with a normal colposcopy and HSIL on cytopathology review, the risk of CIN3 and/or invasive cervical cancer is high enough to warrant diagnostic excision of the TZ. In women with a normal colposcopy and pHSIL on cytopathology review, the risk of CIN3 and/or invasive cervical cancer is high enough to warrant diagnostic excision of the transformation zone in most cases, but in some situations a short period of observation may be appropriate (see Chapter 9. Management of histologically confirmed low-grade squamous abnormalities).
RECOMMENDATIONS

Flowchart 8.1. Normal colposcopy after LBC prediction of pLSIL/LSIL

Flowchart 8.2. Normal colposcopy after LBC prediction of possible HSIL
Flowchart 8.3. Normal colposcopy after LBC prediction of HSIL

CONSENSUS-BASED RECOMMENDATION

REC8.1: Normal colposcopy following LBC prediction of negative or pLSIL/LSIL

For women with a positive oncogenic HPV (any type) test result, a LBC report of negative or pLSIL/LSIL, and normal colposcopy, the HPV test should be repeated in 12 months:

- If HPV is not detected at 12 months, the woman should return to routine 5-yearly HPV screening.
- If the woman has a positive oncogenic HPV (not 16/18) test result at 12 months and a LBC report of negative or pLSIL/LSIL, the HPV test should be repeated in another 12 months.
 - If the woman has a positive oncogenic HPV (any type) test at the 24 month HPV test, she should be referred directly for colposcopic assessment, which will be informed by the result of the reflex LBC.
- If the woman has a positive oncogenic HPV (not 16/18) test result at 12 months and a LBC prediction of pHSIL/HSIL or any glandular abnormality, she should be referred for colposcopic assessment at the earliest opportunity, ideally within 8 weeks.
- If the woman has a positive oncogenic HPV (16/18) test result at 12 months, she should be referred directly for colposcopic assessment at the earliest opportunity, ideally within 8 weeks, and the reflex LBC result will inform the colposcopy.

PRACTICE POINT

REC8.2: Normal colposcopy following LBC prediction of HSIL: cytopathology review

Cytopathology review is recommended to confirm HSIL before proceeding to excisional treatment for women with a normal colposcopy after a positive oncogenic HPV (any type) test result and an initial LBC prediction of pHSIL/HSIL.
PRACTICE POINT

REC8.3: Normal colposcopy following LBC prediction of HSIL: exclude VAIN
When colposcopic impression is discordant with a referral LBC prediction of HSIL, colposcopic examination of the vagina is indicated to exclude a vaginal intraepithelial neoplasia before diagnostic excisional treatment.

CONSENSUS-BASED RECOMMENDATION

REC8.4: Normal colposcopy following LBC prediction of HSIL: diagnostic excision of TZ
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a LBC prediction of HSIL on cytopathology review, diagnostic excision of the TZ should be performed.

CONSENSUS-BASED RECOMMENDATION

REC8.5: Normal colposcopy following LBC prediction of pHSIL: consider diagnostic excision of TZ
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a LBC prediction of pHSIL on cytopathology review, diagnostic excision of the TZ should be considered, though observation is an option.

PRACTICE POINT

REC8.6: Normal colposcopy following LBC prediction of pHSIL: diagnostic excision or observation
Some women with a positive oncogenic HPV test result for whom diagnostic excision of the TZ is recommended due to a confirmed LBC prediction of pHSIL on cytopathology review, despite normal colposcopic findings, may be concerned about the possibility of having unnecessary treatment. The colposcopist may have similar concerns. Women who opt to defer treatment, particularly younger women with concerns about fertility, can be offered observation:

- A HPV test and colposcopy should be repeated at 6 months, and a diagnostic excisional procedure should be reconsidered based on the test results (HPV and reflex LBC, if performed) obtained at that time.
- If oncogenic HPV is not detected, and the colposcopic impression is unchanged, the HPV test should be repeated in 12 months and if oncogenic HPV is not detected, the woman can return to routine 5-yearly screening.

CONSENSUS-BASED RECOMMENDATION

REC8.7: Downgrading of discordant results
For women who have a positive oncogenic HPV (any type) test result, normal colposcopy, and a subsequent LBC report of pLSIL/LSIL or less on cytopathology review, management should be according to the reviewed cytological report (i.e. repeat HPV test in 12 months).

PRACTICE POINT

REC8.8: Colposcopist should manage discordant results
Women with discordant colposcopy and LBC results should have their management supervised by the colposcopist until both the colposcopist and the woman are satisfied with the proposed management plan.
Systematic reviews were conducted to answer the following questions:

- For women with a positive oncogenic HPV (any type) test result, a LBC report of negative or LSIL, and Type 3 TZ (or unsatisfactory in previous terminology) colposcopy, what is the safety and effectiveness of 12-month follow-up testing with a HPV test alone, compared with co-testing (HPV and LBC)?
- For women with positive oncogenic HPV (any type) test result, a cytology prediction of pHSIL/HSIL, and Type 3 TZ (or unsatisfactory in previous terminology) colposcopy, what is the safety and effectiveness of conservative management, compared with diagnostic excision of the TZ?

References

TYPE 3 TZ (PREVIOUSLY TERMED ‘UNSATISFACTORY’) COLPOSCOPY FOLLOWING LBC REPORTED NEGATIVE OR PREDICTION OF LSIL

No randomised or pseudorandomised controlled trials were identified that compared testing strategies and reported cancer outcomes in women with a positive HPV test result, cytology reported negative or LSIL, and Type 3 TZ (unsatisfactory) colposcopy. The search strategies and inclusion and exclusion criteria used are described in detail in the Technical report.

In the absence of any direct evidence from the systematic review, a general review of the literature on the management of women with negative or pLSIL/LSIL cytology and a type 3 TZ colposcopy was undertaken to inform consensus-based recommendations.

No longitudinal studies were found that followed women with an initial cytology prediction of pLSIL/LSIL and Type 3 TZ (unsatisfactory) colposcopy. Three retrospective cross-sectional cohort studies\(^\text{[1][2][3]}\) reported outcomes for women with pLSIL/LSIL initial cytology and an unsatisfactory colposcopy:

- In a cohort of 427 women with ASC-US or LSIL cytology who underwent colposcopy (with endocervical curettage) and the entire squamocolumnar junction was not visible, CIN2+ lesions of the endocervical canal were diagnosed in 18 women (4.2%):\(^\text{[1]}\) eight of these women either had not undergone cervical biopsy or had less than CIN2 disease on cervical biopsy. These also included two women with invasive cancer of the endocervical canal (0.5%), both of whom had a cervical biopsy report of CIN2+. CIN2+ was diagnosed in the endocervical canal in three of 256 women (1.2%) with a normal but unsatisfactory colposcopy, and 15 of 171 women (8.8%) with an abnormal and unsatisfactory colposcopy. The degree to which the findings of this study can be generalised to women in the renewed NCSP is limited, because neither HPV status nor the selection criteria for endocervical curettage was specifically reported.

- In a cohort of 118 women with ASC-US or LSIL cytology who underwent colposcopy (with endocervical curettage) and either the entire squamocolumnar junction was not visible or a visible lesion not seen in its entirety, CIN2+ was diagnosed on cervical biopsy in 18 women (15.3%).\(^\text{[2]}\) Of these women, six had endocervical as well as ectocervical disease. No additional cases were detected on endocervical curettage. The degree to which the findings of this study can be generalised to women in the renewed NCSP is limited, because neither HPV status nor the selection criteria for endocervical curettage was reported.

- In a cohort of women with normal, ASCUS or LSIL cytology who underwent cone biopsy after an unsatisfactory colposcopy (entire squamocolumnar junction not visible or visible lesion not seen in its entirety) and CIN1 was detected on colposcopically guided biopsy, histologically confirmed CIN2+ was diagnosed in one woman (4.3%).\(^\text{[3]}\) The degree to which the findings of this study can be generalised to women in the renewed NCSP is limited, because HPV status was not reported and 25% of the women were HIV-positive.

A summary of the literature considered can be found in the Technical report.

Overall, this body of evidence suggests that diagnostic excision of the TZ may detect additional clinically significant cervical lesions in women with cytology reported as LSIL and Type 3 TZ (unsatisfactory) colposcopy. In this situation, pre-renewal NCSP guidelines recommended repeating cytology in 12 months. In the renewed NCSP, it is appropriate to apply the same follow-up interval for the repeat HPV test (with reflex LBC if positive for any oncogenic HPV type).

TYPE 3 TZ (PREVIOUSLY TERMED ‘UNSATISFACTORY’) COLPOSCOPY FOLLOWING LBC PREDICTION OF HSIL

No randomised or pseudorandomised controlled trials were identified that compared conservative management with diagnostic excision of the transformation zone and reported cancer outcomes in women with a positive HPV test result, cytological prediction of HSIL, and Type 3 TZ (unsatisfactory) colposcopy. The search strategies and inclusion and exclusion criteria used are described in detail in the Technical report.

In the absence of any direct evidence from the systematic review, a general review of the literature on the management of women with HSIL cytology and Type 3 TZ (unsatisfactory) colposcopy was undertaken to inform consensus-based recommendations.

No longitudinal studies were found that followed women with an initial cytology prediction of pHsIL/HSIL and Type 3 TZ (unsatisfactory) colposcopy, with or without cytopathology review. Two retrospective cross-sectional cohort studies\(^\text{[4][5]}\) reported outcomes for women with an initial prediction of pHsIL/HSIL and unsatisfactory colposcopy:

- In a cohort of 78 women with a cytology prediction of HSIL and unsatisfactory colposcopy (entire TZ including squamocolumnar junction not visible) who underwent LEEP, CIN2+ was histologically confirmed in 43 women (55.1%).\(^\text{[4]}\) Of these, one woman (1.3%) had invasive cervical cancer. CIN2+ disease (including the one case of cervical cancer) was found on LEEP in 35 (74.5%) of 47 women with HSIL cytology on review. The degree to which the findings of these studies can be generalised to women in the renewed NCSP is limited, because HPV status was not reported, and review cytology findings could not be compared with initial referral cytology findings or colposcopically directed biopsy findings for individual women. It was not possible to assess how many extra cases of CIN2+ were detected on LEEP.
In a cohort of 65 women with a cytology report of HSIL who underwent cone biopsy after colposcopy detected no visible lesions and was unsatisfactory (entire TZ not visible), CIN2+ was diagnosed in 25 women (38.5%) and invasive cervical cancer was diagnosed in three women (4.6%). The degree to which the findings of these studies can be generalised to women in the renewed NCSP is limited, because neither HPV status nor the results of colposcopy (if performed) was reported.

In both of these studies a significant number of women were diagnosed with CIN2+ on excisional biopsy. This finding underpins an approach involving excision of the TZ when the referral cytology is HSIL after cytopathology review and the TZ cannot be fully visualised (Type 3 TZ), irrespective of a HPV test result.

A summary of the literature considered can be found in the Technical report.

RECOMMENDATIONS

Flowchart 8.4. Colposcopy Type 3 TZ after LBC prediction of pLSIL/LSIL
Flowchart 8.5. Colposcopy Type 3 TZ after LBC prediction of possible HSIL

Flowchart 8.6. Colposcopy Type 3 TZ after LBC prediction of HSIL
CONSENSUS-BASED RECOMMENDATION

REC8.9: Repeat HPV test after Type 3 TZ colposcopy and referral LBC negative or pLSIL/LSIL

For women who have a positive oncogenic HPV (any type) test result with a LBC report of negative or pLSIL/LSIL, and colposcopy is reported as Type 3 TZ,† the HPV test should be repeated in 12 months:

- If oncogenic HPV is not detected at 12 months, the HPV test should be repeated 12 months later.
- If oncogenic HPV is not detected again at the second repeat HPV test, the woman should be advised to return to routine 5-yearly screening.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

PRACTICE POINT

REC8.10: Cytopathology review prior to observation for pLSIL/LSIL and Type 3 TZ at colposcopy

When observation is advised, cytopathology review is recommended to confirm the low-grade cytological abnormality.

- If pLSIL/LSIL is confirmed, observation is appropriate.
- If pHsIL/HSIL is confirmed, then diagnostic excision of the TZ should be considered.

PRACTICE POINT

REC8.11: Role of ECC in Type 3 TZ colposcopy following LBC prediction of pLSIL/LSIL

Despite a lack of evidence, endocervical curettage can be considered for women who have a positive oncogenic HPV test result (any type) with a LBC report of persistent pLSIL/LSIL and colposcopy reported as Type 3 TZ.† A negative ECC may provide additional reassurance for a conservative (observational) approach.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.
CONSENSUS-BASED RECOMMENDATION

REC8.12: Diagnostic excision of the TZ should not be performed if there is no cytological or histological evidence of a high-grade lesion after Type 3 TZ colposcopy

For asymptomatic women who have a positive oncogenic HPV (any type) test result, Type 3 TZ colposcopy, and no cytological, colposcopic or histological evidence of a high-grade lesion, further diagnostic procedures (such as diagnostic excision of the transformation zone) should not routinely be performed.†

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

PRACTICE POINT

REC8.13: Role of diagnostic excision: exceptions to recommendation (8.12) against diagnostic excision of TZ in the absence of high-grade cytology or histology

Diagnostic excision of the TZ can be offered to certain groups of women who have a positive oncogenic HPV test result, a LBC report of negative or pLSIL/LSIL, and colposcopy reported as Type 3 TZ:†

• women who have completed childbearing
• women who are anxious about cancer risk
• women aged over 50 years
• women who may not be compliant with recommended surveillance.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

CONSENSUS-BASED RECOMMENDATION

REC8.14: Diagnostic excision: Type 3 TZ colposcopy after LBC prediction of pHSIL/HSIL

For women who have a positive oncogenic HPV (any type) test result, a LBC prediction of pHSIL/HSIL after cytopathology review, and Type 3 TZ colposcopy, diagnostic excision of the TZ should be performed.

† Type 3 TZ indicates failure to visualise the upper limit of the TZ, or the entire TZ is within the endocervical canal. It corresponds to ‘unsatisfactory’ in previous terminology.

PRACTICE POINT

REC8.15: Cytopathology review: Type 3 TZ colposcopy following LBC prediction of pHSIL/HSIL

Cytopathology review should be considered to confirm a high-grade cytological abnormality before excision, after a positive oncogenic HPV (any type) test result and an initial LBC prediction of pHSIL/HSIL, when there is a Type 3 TZ colposcopy.

This is particularly important when the LBC prediction is pHSIL because pHSIL has a lower PPV for high-grade disease and the subsequent excision specimens show no evidence of cervical pathology in 45–55% of cases.

PRACTICE POINT

REC8.16: Deferral of treatment following cytopathology review: Repeat HPV test and colposcopy in 6 months

Following cytopathology review, rarely the woman or the clinician wish to defer treatment. In this situation the woman should have a repeat HPV test and colposcopy in 6 months.

• If HPV detected (any type) and LBC pLSIL/LSIL, repeat HPV test in 12 months
• If HPV detected (any type) and LBC pHSIL/HSIL, the woman should have diagnostic Type 3 excision of the TZ.
There is currently insufficient high-level evidence to guide the management of discrepancies between cytological findings and colposcopic impression in women who have positive oncogenic HPV test results, or who have pLSIL/LSIL and Type 3 TZ colposcopy. These consensus-based recommendations and practice points are considered conservative and offer a safe approach, but this may require review as future research results become available.
MANAGEMENT OF HISTOLOGICALLY CONFIRMED LOW-GRADE SQUAMOUS ABNORMALITIES

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
A/Professor Lyndal Anderson – Co-author
Dr Andrea Garrett – Co-author
Professor Ian Hammond – Co-author
A/Professor Selvan Pather – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Management of histologically confirmed low-grade squamous abnormalities

BACKGROUND
According to the two-tiered nomenclature for cervical histology recommended by the Lower Anogenital Squamous Terminology (LAST) Standardization Project\(^1\) and adopted by the Royal College of Pathologists of Australasia, non-invasive human papillomavirus (HPV)-associated squamous lesions are classified as follows (see Chapter 3. Terminology):

- LSIL: low-grade squamous intraepithelial lesion
- HSIL: high-grade squamous intraepithelial lesion

Current pre-renewal National Cervical Screening Program (NCSP) guidelines do not recommend treatment for histologically confirmed low-grade squamous intraepithelial lesions (LSIL); cervical intraepithelial neoplasia grade one (CIN1) or a lesser lesion detected on biopsy. These lesions are considered to be an expression of a productive HPV infection.\(^2\) The 2005 national guideline for the management of screen-detected cervical abnormalities\(^2\) recommended that women with histologically confirmed low-grade squamous abnormalities undergo repeat conventional cytology (Pap test) at 12 and 24 months, and return to routine screening if both tests are negative or continue annual cytology until two consecutive tests are negative.

Within the pre-renewal NCSP, it is common for a woman’s cytology status to fluctuate between low-grade abnormality and negative,\(^2\) probably due to HPV infection, clearance and reinfection.\(^3\) Within programs based on primary HPV screening, clinical decisions can be informed by known HPV status as well as cytology.

Within the pre-renewal NCSP, the HPV status of individual women with histologically confirmed low-grade squamous abnormalities is not routinely available and recommendations are based on the assumption that it is unknown. Under the renewed NCSP, in contrast, the clinical significance of histological, colposcopic and cytological findings in women with screen-detected abnormalities is assessed in the context of known positive HPV status.

EVIDENCE
Systematic review evidence

A systematic review was performed to identify studies evaluating efficacy and safety outcomes of management options for women with a positive HPV-test result, a colposcopic impression of LSIL and histologically confirmed CIN1 or less on biopsy, whether concordant or discordant with referral liquid-based cytology (LBC):

- For those with a cytology finding of negative, possible low-grade squamous epithelial lesion or low-grade squamous epithelial lesion (pLSIL/LSIL), repeat HPV test at 12 months was compared with the combination of repeat LBC and HPV test (co-testing) at 12 months.
- For those with a cytology finding of possible or high-grade squamous epithelial lesion (pHSIL/HSIL), diagnostic excision was compared with co-testing at 12 months.

No randomised or pseudorandomised controlled trials were identified that compared:

- HPV testing alone with co-testing as follow-up for women with a positive HPV test result with a reflex LBC finding of negative or pLSIL/LSIL
- excisional treatment with follow-up by co-testing in women with a reflex cytology finding of pHSIL/HSIL

The search strategies, inclusion/exclusion criteria and findings are described in detail in the Technical report.
General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed to inform consensus-based recommendations. The review focused on the management of women with:

- a positive oncogenic HPV test result
- a colposcopic impression of LSIL
- histologically confirmed CIN1 or less on biopsy
- referral cytology report of negative, or prediction of pLSIL/LSIL or pHSIL/HSIL.

Several studies examined outcomes following histologically confirmed CIN1 or less on biopsy. The most relevant findings are summarised below:

- In a prospective cohort study using data from the Kaiser Permanente Northern California health system,[4] the crude rate of CIN3+ was 0.7% following a single negative follow-up smear, 0.2% following a single negative follow-up HPV test and 0.1% following a negative follow-up co-test in women with HPV-positive ASC-US or any LSIL and less than CIN2 on colposcopy/biopsy over a maximum of 7 years of follow-up.

- In a prospective cohort study (ASCUS-LSIL Triage Study)[5] 45% of women with baseline ASCUS/LSIL and less than CIN2 on colposcopy/biopsy, a follow-up finding of HSIL and a positive HPV test, developed CIN3+ within 2-year follow-up. (In this cohort, ASCUS may have included ASC-H.)

- One retrospective cohort study[6] of women who underwent loop electrosurgical excision procedure (LEEP) after referral cytological prediction of pHSIL/HSIL reported histologically confirmed CIN3+ in 41% of those with normal histology on the initial biopsy and 64% of those with CIN1 at initial biopsy. However, HPV status was not known.

Overall, available evidence suggests the following conclusions:

- For women with a positive oncogenic HPV test result, ASC-US and histologically confirmed CIN1 or a lower-grade lesion, the negative predictive value of HPV follow-up testing alone will be greater than that of cytology alone, but less than co-testing.

- For women with a positive oncogenic HPV test result and initial referral cytology of LSIL, the finding of HSIL at follow-up cytology indicates a substantial risk of future CIN3+.

- Diagnostic excision of the transformation zone (TZ) appears to be the optimal approach for women with a positive oncogenic HPV test result, a referral cytological prediction of pHSIL/HSIL, a colposcopic impression of LSIL, and histologically confirmed CIN1 or a lower-grade lesion, especially if pHSIL/HSIL is confirmed on cytopathology review.[10] The PPV is variable and depends on the referral cytology prediction. One study reported that, where referral cytology predicted a high-grade abnormality, then the PPV for identifying HSIL on biopsy was 73%. If the referral cytology was low grade, the PPV was 48%, demonstrating a clear relationship between the PPV of colposcopic impression to the referral cytology prediction.[11]

A summary of the literature considered can be found in the Technical report.

RECOMMENDATIONS

When there is discordance between the LBC report and histopathology, review of both cytology and histopathology should be carried out to inform management decisions.

CONSENSUS-BASED RECOMMENDATION

REC9.1: HPV test 12 months after histologically confirmed LSIL (≤ CIN1)

Women who have a positive oncogenic HPV (any type) test result with a LBC report of either negative or pLSIL/LSIL, and histologically confirmed ≤ CIN1 on biopsy, should have a repeat HPV test 12 months later:

- If oncogenic HPV is not detected at the repeat HPV test, the woman should return to routine 5 yearly screening.

- If the repeat test is positive for oncogenic HPV (not 16/18) and the LBC report is negative or pLSIL/LSIL, the woman should have a further repeat HPV test in 12 months.
 - If the second follow-up HPV test is negative the woman should return to routine 5-yearly screening.
 - If the second follow-up test is HPV positive, the woman should be referred for colposcopic assessment informed by reflex LBC.

- If the repeat test is positive for oncogenic HPV (not 16/18) and the LBC report is pHSIL/HSIL, the woman should be referred for colposcopic assessment.

- If the repeat test is positive for oncogenic HPV (16/18), the woman should be referred for colposcopic assessment informed by the reflex LBC.

151
<table>
<thead>
<tr>
<th>Consensus-Based Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC9.2: LSIL (≤ CIN1) should not be treated</td>
</tr>
<tr>
<td>Women who have a positive oncogenic HPV (any type) test result with a LBC report of negative or pLSIL/LSIL, who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), should not be treated, because these lesions are considered to be an expression of a productive HPV infection.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus-Based Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC9.3: Diagnostic excision when HSIL confirmed on cytopathology review</td>
</tr>
<tr>
<td>Women who have a positive oncogenic HPV test result (any type) with a LBC report of HSIL (confirmed after cytopathology review), and who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), should be offered diagnostic excision of the TZ.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Consensus-Based Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC9.4: Option for observation following cytological prediction of pHSIL</td>
</tr>
<tr>
<td>Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of pHSIL (confirmed after cytopathology review), and who have undergone colposcopy and have a histologically confirmed LSIL (≤ CIN1), could be offered diagnostic excision of the TZ. If the colposcopist considers a period of observation is preferable to treatment, or the woman with these findings wishes to defer diagnostic excision, she can be offered observation with a HPV test and colposcopy at 6–12 months:</td>
</tr>
<tr>
<td>- If oncogenic HPV is not detected at the repeat test, the HPV test should be repeated again in 12 months.</td>
</tr>
<tr>
<td>- If the second follow-up test is negative, the woman should return to routine 5-yearly screening.</td>
</tr>
<tr>
<td>- If the woman has a positive oncogenic HPV (any type) test result at the repeat test, her reflex LBC report is negative or pLSIL/LSIL, and her colposcopic impression is normal or LSIL, the HPV test should be repeated annually.</td>
</tr>
<tr>
<td>• When oncogenic HPV is not detected at two consecutive annual tests, the woman can return to 5-yearly screening.</td>
</tr>
<tr>
<td>• If the woman has a positive oncogenic HPV (any type) test result at the repeat test, and her LBC prediction is pHSIL/HSIL or any glandular abnormality, she should have a diagnostic excision of the TZ.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Practice Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>REC9.5: Criteria for observation following cytological prediction of pHSIL</td>
</tr>
<tr>
<td>Women should not be offered observation unless the colposcopic assessment meets all the following conditions:</td>
</tr>
<tr>
<td>• Colposcopy is adequate.</td>
</tr>
<tr>
<td>• TZ is completely visualised (Type 1 or 2 TZ*).</td>
</tr>
<tr>
<td>• LSIL (≤ CIN1) has been confirmed on histopathological review.</td>
</tr>
</tbody>
</table>

IFCPC: International Federation of Cervical Pathology and Colposcopy 2011
Flowchart 9.1. Histological LSIL following colposcopy for LBC prediction of HSIL

LBC prediction of HSIL

- **Colposcopy**
 - Type 1 or 2 TZ
 - Normal TZ
 - ± Cervix biopsy
 - Repeat HPV test and Colposcopy in 6 months
 - HPV not detected and normal TZ
 - HPV test at 12 months
 - HPV detected & any LBC result &/or abnormal TZ
 - Type 2 excision TZ
 - Abnormal TZ
 - ± Cervix biopsy
 - Cytopathologic review
 - HSIL +
 - Type 2 excision TZ
 - Type 3 TZ
 - Diagnostic Type 3 excision TZ

PRACTICE POINT

REC9.6: Cytology review essential when test results are discordant

For women who have a positive oncogenic HPV (any type) test result with a histologically confirmed LSIL (≤ CIN1 after LBC prediction of pHSIL/HSIL), both the cytology and the histopathology should be reviewed by a pathologist from at least one of the reporting laboratories, who should then convey the results of the review to the colposcopist in order to inform the management plan.

BENEFITS AND HARMs

Despite the recommendations contained in the pre-renewal NCSP guidelines, many women have continued to have unnecessary treatment for LSIL (≤ CIN1). These guidelines reiterate the previous advice, and colposcopists are advised not to treat these women unless there are exceptional circumstances. Compliance with these recommendations will benefit women by avoiding unnecessary treatment and consequent harms.

Cytological review for discordant results, as recommended in these guidelines, will benefit women by preventing over investigation and unnecessary treatment (see Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP)).

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

These recommendations represent minimal change to those that apply to the pre-renewal NCSP.!

Timely expert review of cytology and histology is recommended for women with low-grade histology results that are discordant with preceding high-grade cytology findings, before proceeding to any diagnostic treatment. Implementation of this recommendation may increase the workload of pathologists, laboratories and colposcopists. Clinicians may need to spend extra time reviewing results and providing advice to women.
The major change in clinical practice is that conventional cytology is replaced by HPV testing and reflex LBC for the follow-up of women with histologically confirmed LSIL (≤ CIN1). The high negative predictive value of HPV testing should allow a significant proportion of women to return to routine cervical screening earlier than was possible under the pre-renewed NCSP.

Resourcing
Pathology review of discordant results may increase the workload of pathology services, leading to delay in service provision and increased distress to already anxious women. Ensuring that pathology services are adequately staffed (have enough pathologists and laboratory staff) may have cost implications.

Failure of colposcopists to comply with the recommendation not to offer treatment for women with LSIL (≤ CIN1) would lead to unnecessary costs.

Barriers to implementation
These recommendations represent minimal change to those that apply to the pre-renewal NCSP.69 Accordingly, no significant barriers to implementation are anticipated. It is recommended that LSIL (≤ CIN1) should not be treated. Under the pre-renewed NCSP, clinical practice has not fully complied with this recommendation. It is estimated that approximately 30% of women with LSIL (≤ CIN1) undergo excisional treatment. This decision may be due to physician or patient anxiety, especially when the finding is persistent.

Under the renewed NCSP, colposcopists may continue to have concerns about conservative management of low-grade abnormalities, despite evidence supporting this approach. Failure to implement this recommendation would result in unnecessary treatment and consequent harms.

Colposcopists may proceed to diagnostic excisional procedures for apparent discordant pathology results, without arranging for expert pathology review to confirm the findings. Failure to implement the recommendation for cytological and histological review may lead to unnecessary treatment.

DISCUSSION
Unresolved issues
No unresolved issues have been identified.

The safety of this approach will be monitored by the Quality and Safety Monitoring Committee of the NCSP.

Future research priorities
Prospective studies are needed to measure compliance with recommendations, especially the recommendation against routine treatment for histologically confirmed LSIL (≤ CIN1), and the recommendation for pathology review of discordant results.

Clinical trials are needed to determine the optimal management, and duration of observation, for persistent or fluctuating LSIL (≤ CIN1).

References
10.

MANAGEMENT OF HISTOLOGICALLY CONFIRMED HIGH-GRADe SQUAMOUS ABNORMALITIES

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

A/Professor Lyndal Anderson – Co-author
A/Professor Selvan Pather – Co-author
Professor Gordon Wright – Co-author
Professor Ian Hammond – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:

• Introduction
• Diagnosis of HSIL
• Treatment of HSIL
• Test of Cure after treatment for HSIL (CIN2/3)
• Discussion
MANAGEMENT OF HISTOLOGICALLY
CONFIRMED HIGH-GRADE SQUAMOUS ABNORMALITIES

Management of histologically confirmed high-grade squamous abnormalities

INTRODUCTION
According to the two-tiered nomenclature for cervical histology recommended by the Lower Anogenital Squamous Terminology (LAST) standardization project[1] and adopted by the Royal College of Pathologists of Australasia, non-invasive human papillomavirus (HPV)-associated squamous lesions are classified as:

• LSIL: low-grade squamous intraepithelial lesion
• HSIL: high-grade squamous intraepithelial lesion

HSIL can be further subcategorised, according to the grade of cervical intraepithelial neoplasia (CIN), as HSIL (CIN2) and HSIL (CIN3).

HSIL of the cervix is characterised histologically by mitotic figures in epithelial cells undergoing cell division, nuclear abnormalities including enlarged nuclei and irregular nuclear membranes, and little to no cytoplasmic differentiation in the middle third and upper third of the epithelium.

Invasive squamous cell carcinoma is categorised as:

• SISCCA: superficially invasive squamous cell carcinoma (previously termed microinvasive carcinoma)
• SCC: squamous cell carcinoma

Diagnosis of HSIL

BACKGROUND
HSIL may be suspected from the cytological examination of cells from a cervical smear or LBC preparation. However, in Australia it has been considered best practice to establish the final diagnosis on histopathological examination of tissue obtained from cervical punch biopsy or an excisional procedure.

Histological diagnosis of HSIL (CIN2/3) is necessary before proceeding to treatment, except in certain circumstances. Treatment undertaken at the time of initial colposcopic assessment is known as ‘treatment at first visit’ or ‘see-and-treat’ (see Treatment at first visit in Chapter 7. Colposcopy).

RECOMMENDATION

CONSENSUS-BASED RECOMMENDATION*

REC10.1: Histological diagnosis prior to treatment
For women who have a visible lesion at colposcopy, histological confirmation of HSIL is recommended before undertaking definitive treatment.

References
Treatment of HSIL

HSIL (CIN2/3)
Not all CIN2 or CIN3 lesions will progress to cervical cancer. Based on studies on the natural history of cervical infections with oncogenic HPV types, it has been estimated that 30–50% of untreated CIN2 and approximately 30% of CIN3 regress spontaneously, and that approximately 5% of CIN2 and 14–31% of CIN3 progress to invasive cancer, although differing follow-up times for various studies need to be taken into account in interpreting these findings.[1][2][3][4][5][6] A young age (< 25 years) and pregnancy are two factors associated with higher regression rates of untreated high-grade abnormalities.[7][8][9][10][11][12][13][14][15][16][17]

For the adequate treatment of CIN2 or CIN3, the entire lesion and transformation zone (TZ) must be destroyed or excised. This can be achieved by ablative or excisional treatments (see Chapter 7. Colposcopy). Ablative methods such as CO2 laser ablation are effective but infrequently used in modern practice. Excisional methods such as a large loop excision of the TZ (LEEP), loop electro surgical excision procedure (LEEP) or cold-knife cone biopsy are preferred. A comparison of surgical modalities based on randomised trials reported relative equivalence in effectiveness and safety.[18] Hysterectomy as a primary treatment of CIN2 or CIN3 may also be an option for women who are not considering a future pregnancy and have an associated benign gynaecological disease.

CIN2
Background
CIN2 was previously thought to be an intermediate state between a HPV infection and precancer.[19][20] However, following LAST, CIN2 is now understood to be a morphological entity without a biological correlate.[20] LAST emphasises that there are two biological states caused by HPV; these are LSIL (productive viral infection) and HSIL (transforming or neoplastic HPV infection). CIN2 lesions have been reported to be histologically heterogeneous, with some cases comparable to CIN3 and others similar to CIN1. The reproducibility of CIN2 diagnoses has historically been poor and low inter-observer agreement has been reported.[21][22][23] This is the basis for the LAST recommendation to use p16 positivity in lesions which would be called CIN2 on H&E histopathology, in order to confirm the presence of active oncogenic HPV DNA in these lesions. Two papers published prior to the 2012 report from the LAST project, demonstrate that the risk of persistence of CIN2 lesions is influenced by the oncogenic HPV type and the persistence of the HPV infection, with lesions caused by HPV type 16 less likely to regress than lesions caused by other oncogenic HPV types or non-oncogenic types.[14][23]

A number of molecular markers, of which p16INK4a (p16) has been the most widely studied, have been investigated as an adjunct to cytology and histopathology to help resolve the diagnosis of ambiguous squamous intraepithelial lesions.[24] The LAST project included a comprehensive review of biomarker data, and this underpinned the LAST recommendations.[20]

The expression of p16, a cell cycle regulatory protein, is highly increased in tissues that overexpress the E7 HPV oncoprotein and reflects a transformed oncogenic HPV infection with associated pre-neoplastic epithelial change. Immunostaining for p16 has been investigated in cervical cytology (for example, in identifying women with minor cervical lesions who require further investigation following a Pap smear).[24] Its use is established in histopathology, as p16 overexpression has been reported in a high percentage of high-grade precursor squamous lesions and invasive cancers.[25][24][26][27] The use of p16 immunohistochemistry in histopathology as recommended by LAST will help to clarify the diagnosis of CIN 2 cases and improve inter-observer variability.[24]
EVIDENCE

Systematic review evidence

A systematic review was performed to identify studies evaluating the safety and effectiveness of using p16 immunohistochemistry to stratify management of women with histologically confirmed CIN2 (immediate treatment or observation) compared with treating all CIN2 with excision of the TZ. No randomised or pseudorandomised studies were found that used p16 to stratify management in histologically confirmed CIN2. Details of the LAST project and recommendations are found in the Literature Review evidence section below.

Literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed to ascertain the effectiveness of p16 immunohistochemistry in clarifying a diagnosis of CIN2. A systematic review and meta-analysis of five studies[20][29][30][31][32][33] reported a significantly higher agreement between pathologists’ diagnosis of CIN2+ from cervical biopsy specimens based on haematoxylin and eosin (H&E) morphology and p16 immunohistochemistry combined (κ=0.73; 95%CI: 0.67–0.79) when compared with H&E morphology alone (κ=0.41; 95%CI: 0.17-0.65).[34] A strong association between diffuse, intense staining of cervical specimens with p16 and positivity for oncogenic HPV infections, particularly HPV 16/18 has also been reported.[35][36]

Until recently, CIN2 was regarded as an intermediate biological state between CIN1 and CIN3. With our greater understanding of the biology and natural history of HPV infection in anogenital sites, we now know that there are only 2 biological states caused by HPV: LSIL (productive viral infection) and HSIL (transforming HPV infection). CIN2 is a morphological entity without a biological correlate. Biologically it was a mixture of LSIL and HSIL. The Lower Anogenital Squamous Terminology (LAST) project in 2011-2012 (see also Terminoology section earlier) comprehensively addressed this area of diagnostic difficulty and made evidence-based recommendations.[20] LAST recommended that ‘if the pathologist is entertaining an H&E morphologic interpretation of –IN 2 (under the old terminology, which is a biologically equivocal lesion falling between the morphologic changes of HPV infection (low-grade lesion) and precancer), p16 IHC is recommended to help clarify the situation. Strong and diffuse block positive p16 results support a categorization of precancer. Negative or non-block positive staining strongly favors an interpretation of low-grade disease or a non-HPV associated pathology.’

The Lower Anogenital Squamous Terminology (LAST) Standardization project was undertaken with the objective of developing evidence-based recommendations to unify and standardize the terminology used to classify HPV-associated lesions of the anogenital tract. The LAST recommendations were made using a rigorous process which included conducting systematic reviews and involved a consensus process which was led by a steering committee and involved five working groups which consisted of experts in the field. One working group was responsible for framing the development of historical terminology applied to HPV-associated squamous lesions of the lower anogenital tract and the impact of terminology on clinical management. Three of the working groups performed the systematic literature reviews and developed the draft recommendations. The fifth working group will lead the ongoing implementation of the LAST recommendations.

The draft recommendations were made available for public consultation and finalized in 2012 at the LAST Consensus Conference. The project produced recommendations which help address the issues of variability and reproducibility, often found when reporting HPV-associated neoplasia. The final recommendations specify the biologically applicable histopathologic terminology for HPV- associated squamous intraepithelial lesions and superficially invasive squamous carcinomas across all lower anogenital tract sites.[20] It also specifies the use of biomarkers in resolving histopathologic interpretations and improving diagnostic accuracy.

In contrast to the use of p16 immunostaining in histological specimens, which has a strong evidence base and has been endorsed by WHO, the use of immunostaining of cervical cytology specimens remains experimental. There are no current guidelines endorsing its use in cytology preparations.

RECOMMENDATIONS

CONSENSUS-BASED RECOMMENDATION*

REC10.2: Treatment for HSIL (CIN2)

Women with a histological diagnosis of HSIL (CIN2) should be treated in order to reduce the risk of developing invasive cervical carcinoma.
10. MANAGEMENT OF HISTOLOGICALLY CONFIRMED HIGH-GRADE SQUAMOUS ABNORMALITIES

PRACTICE POINT

REC10.3: p16 should be used to clarify diagnosis of HSIL (CIN2)

The use of p16 immunohistochemistry is recommended to stratify the management of HSIL (CIN2) into immediate treatment or a period of observation.

PRACTICE POINT

REC10.4: HSIL (CIN2) and observation

In some circumstances, it may be acceptable to offer a period of observation (generally 6–12 months) to women who have a histological diagnosis of HSIL (CIN2), and this would usually be supervised by an experienced colposcopist or at a tertiary centre. Observation may be considered for:

- women who have not completed childbearing
- women with discordant histology and LBC prediction of pLSIL/LSIL
- women with focal minor changes on colposcopy and HSIL (CIN2) on histology
- women recently treated for HSIL (CIN2).

HSIL (CIN3)

HSIL (CIN3) involves the presence of dysplastic cells in greater than two thirds of the entire thickness of the epithelium but with no signs of invasion into the stroma. Almost all HSIL (CIN3) lesions can be attributed to persistent infection by high risk HPV types.[37] Based on the controversial ‘unfortunate experiment’ conducted in New Zealand, involving the long-term follow-up of a cohort of women diagnosed with CIN3 from 1955 to 1976, the cumulative risk of invasive cancer over 30 years was 31% in women who only had diagnostic biopsies and 50% in women with persistent CIN3 within 2 years after their biopsy, as opposed to 0.7% in women who were treated conventionally.[38] CIN3 is the primary endpoint in longitudinal studies of the natural history of the HPV infection pathway, therefore the only other available data on the time period from CIN3 to invasive cancer comes from statistical modelling. Such lifetime risk estimates of cervical cancer are in line with the New Zealand study data.[38][39][40] Although not all HSIL (CIN3) lesions progress to invasive cancer, based on current evidence, HSIL (CIN3) lesions need to be treated to reduce the risk of further progression to invasive cancer.

RECOMMENDATION

CONSENSUS-BASED RECOMMENDATION*

REC10.5: Treatment of HSIL (CIN3)

Women with a histological diagnosis of HSIL (CIN3) should be treated in order to reduce the risk of developing invasive cervical carcinoma.

INVASIVE CARCINOMA

When invasive or superficially invasive squamous cell carcinoma is confirmed by histopathology, prompt referral to a gynaecological oncologist is required. Factors that will inform further management will include stage of disease, age, medical history and general health.

RECOMMENDATION

CONSENSUS-BASED RECOMMENDATION*

REC10.6: Referral of women with invasive disease

A woman with a histologically confirmed diagnosis of invasive or superficially invasive (squamous cell carcinoma) should be referred to a gynaecological oncologist or a gynaecological cancer centre for multidisciplinary team review.
10.

CERVICAL SCREENING
GUIDELINES

Management of histologically
confirmed high-grade squamous abnormalities

References
ncbi.nlm.nih.gov/pubmed/16417073].
gov/pubmed/8463044].
8. Coppolillo EF, DE Ruda Vega HM, Brizuela J, Eliseth MC, Barata A, Perazzi BE. High-grade cervical neoplasia during pregnancy: diagnosis, management and
19. Castle PE, Fetterman B, Poitras N, Lorey T, Shaber R, Kinney W. Relationship of atypical glandular cell cytology, age, and human papillomavirus detection to cervical and
background and consensus recommendations from the College of American Pathologists and the American Society for Colposcopy and Cervical Pathology. Arch Pathol
22. Carreon JD, Sherman ME, Guillén D, Solomon D, Herrero R, Jerónimo J, et al. CIN2 is a much less reproducible and less valid diagnosis than CIN3: results from a histological
nih.gov/pubmed/18043039].
28. Stoler M, Bergeron C, Colgan TJ, et al. Tumours of the Uterine Cervix In: Kurman RJ, Carcangiu ML, Herrington CS, Young RH (Eds.). WHO Classification of Tumours of
34. Reuschenbach M, Wentzensen N, Dijkstra MG, von Knebel Doeberitz M, Arbyn M. p16INK4a immunohistochemistry in cervical biopsy specimens: A systematic review
ncbi.nlm.nih.gov/pubmed/20955383].
38. Vink MA, Bogaards JA, van Kemenade FJ, de Melker HE, Meijer CJ, Berkhof J. Clinical progression of high-grade cervical intraepithelial neoplasia: estimating the time
pubmed/23897645].
39. Insinga RP, Dasbach EJ, Elbasha EH. Epidemiologic natural history and clinical management of Human Papillomavirus (HPV) Disease: a critical and systematic review of the literature

160


BACKGROUND

In women who have been treated for a high-grade squamous lesion (HSIL (CIN2/3)) the risk of recurrence and invasive cervical cancer remains elevated for 10–25 years highlighting the importance of continued post-treatment surveillance to detect residual or recurrent disease. In Australia, the combination of LBC and testing for oncogenic HPV types (co-test) is used as a Test of Cure following treatment of HSIL (CIN2/3), based on the high negative predictive value of the co-test in detecting women at risk of recurrence. However, there has been some uncertainty regarding the length of time required for a woman to be considered as cured and safe to return to the screening intervals recommended for the general population.

EVIDENCE

Systematic review evidence

A systematic review was performed to identify studies evaluating the safety and effectiveness of discharging women previously treated for HSIL based on a negative co-test at 12 months versus 12 and 24 months. No randomised or pseudorandomised studies were found.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed on the use of HPV testing and cytology in the follow-up of women treated for HSIL (CIN2/3).

Five recent articles were found of which three were directly relevant, reporting 5-year risks of recurrent high grade CIN following one negative co-test and following two negative co-tests. Katki et al estimated a lower 5-year risk of recurrent CIN2+ for two negative co-tests (1.5%) when compared with one negative co-test (2.4%) (p=0.8). However, the authors stated that estimates were based on small numbers and therefore subject to considerable uncertainty. These findings were in agreement with reports from a Dutch study of lower 5-year cumulative risks of CIN2+ and CIN3+ disease for a negative co-test at 6 and 24 months post treatment, when compared with a negative co-test at 6 months post treatment. In this study, the 5-year cumulative risk of CIN2+ was 1.0 (0.2–4.6) and of CIN3+ was 0.0 (0.0–2.9) following a negative co-test at 6 and 24 months.

Based on the evidence from these two studies, women who have been treated for high-grade squamous lesions should have co-testing performed at 12 months after treatment and annually thereafter. When a woman undergoing annual co-testing has had a negative co-test on two consecutive occasions, she can return to routine screening.
10. MANAGEMENT OF HISTOLOGICALLY CONFIRMED HIGH-GRADE SQUAMOUS ABNORMALITIES

RECOMMENDATIONS

Flowchart 10.1. Test of Cure following treatment for high-grade squamous abnormalities

CONSENSUS-BASED RECOMMENDATION

REC10.7: Test of Cure after treatment for HSIL (CIN2/3)

A woman who has been treated for HSIL (CIN2/3) should have a co-test† performed at 12 months after treatment, and annually thereafter, until she receives a negative co-test on two consecutive occasions, when she can return to routine 5 yearly screening.

† Co-testing can be performed by the woman’s usual healthcare professional.

CONSENSUS-BASED RECOMMENDATION

REC10.8: Abnormal Test of Cure results: positive oncogenic HPV (16/18) test result

If, at any time post treatment, the woman has a positive oncogenic HPV (16/18) test result, she should be referred for colposcopic assessment (regardless of the reflex LBC result).

CONSENSUS-BASED RECOMMENDATION

REC10.9: Abnormal Test of Cure results: LBC pHSIL/HSIL or glandular abnormality

If, at any time during Test of Cure, the woman has a LBC prediction of pHSIL/HSIL or any glandular abnormality, irrespective of HPV status, she should be referred for colposcopic assessment.
CONSENSUS-BASED RECOMMENDATION

REC10.10: Abnormal Test of Cure results: positive oncogenic HPV (not 16/18) test result
If, at any time post-treatment, the woman has a positive oncogenic HPV (not 16/18) test result and a LBC report of negative or prediction of pLSIL/LSIL, she should continue to have annual co-testing until the she has a negative co-test on two consecutive occasions, when she can return to routine 5-yearly screening.

PRACTICE POINT

REC10.11: Fluctuating Test of Cure results: positive oncogenic HPV (not 16/18) test result and/or pLSIL/LSIL
Some women may experience fluctuating results with a positive oncogenic HPV (not 16/18) test result and/or LBC prediction of pLSIL/LSIL. These women do not need colposcopic review but, if the woman is anxious, a colposcopic assessment may be appropriate to provide reassurance.

PRACTICE POINT

REC10.12: Colposcopy is not necessary at the initial post-treatment visit
A post-treatment colposcopic assessment at 4–6 months has been the usual practice under pre-renewal NCSP guidelines. This practice is not evidence-based, but may provide reassurance to both the patient and clinician regarding the visual appearance of the cervix and allows for the discussion of any other relevant issues (bleeding, fertility, related symptoms etc.) following treatment.

The post-treatment review should:

• include speculum examination of the vagina and cervix (but colposcopy is not considered necessary)
• not involve HPV testing or LBC.

Subsequent post-treatment Test of Cure surveillance should be performed by the woman’s GP or health professional, who should follow the recommendations for the management of any abnormal test results.

References

Discussion: Management of histologically confirmed high-grade squamous abnormalities

BENEFITS AND HARMs

The practice of treating all cases of HSIL (CIN2/3) has been highly effective and has led to a reduction in the risk of subsequent cervical cancer.

A very small number of women with HSIL may be treated unnecessarily. However, it is not possible to identify these women in advance. This small risk must be weighed against the substantial evidence for the effectiveness of cervical screening and HSIL (CIN2/3) treatment to prevent the development of invasive cervical cancer. The benefits of treating HSIL (CIN2/3) outweigh the harms, and treating HSIL (CIN2/3) is the basis for the documented success of the National Cervical Screening Program (NCSP).

See the Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP).

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

Recommendations regarding the management of women with HSIL (CIN2/3) are consistent with present clinical practice.

Resourcing

No additional costs are anticipated.

Barriers to implementation

Women treated for HSIL (CIN2/3) may choose not to attend for post-treatment co-testing as recommended. An Australian study using state registry data found that 53% of women treated for high-grade cervical dysplasia attended only a single HPV follow-up test.[1]

Some women will be very anxious if they have continuing abnormality (as may their GP) and a colposcopy may be needed for reassurance. However, treatment of LSIL (≤ CIN1), even if persistent, should be avoided wherever possible.

DISCUSSION

Women who are undergoing Test of Cure, and who have a positive oncogenic HPV (16/18) test result with any LBC report, or LBC prediction of pHSIL/H SIL with any HPV test result, should be referred for colposcopy to exclude recurrent or residual disease. This more cautious post-treatment management of these women is warranted.

The National HPV Vaccination Program is expected to reduce the number of oncogenic HPV 16/18 infections, high-grade abnormalities and the risk of cervical cancer directly in vaccinated women, as successive vaccinated cohorts mature and indirectly in unvaccinated women, via a reduction in the circulation of vaccine included HPV types within the population.

Unresolved issues

Although two negative co-tests are required before returning women to routine screening after treatment for HSIL (CIN2/3), there is uncertainty regarding whether one negative co-test or a single negative HPV test would be sufficient before safely returning women to routine screening intervals of 5 years. This issue will be informed by the ongoing accumulation of national data by the Australian Institute of Health and Welfare (AIHW) and will be considered by the Quality and Safety Monitoring Committee of the renewed NCSP.

For some women with a negative co-test result at 12 months but a positive HPV test and negative cytology result at 24 months, there is a possibility that the lesion is ‘cured’ and the positive oncogenic HPV test may indicate re-infection rather than recurrence. However, the scientific evidence to support this is currently not available.

Future research priorities

The role of p16 and Ki-67 in the triage of HSIL (CIN2), and its use in the renewed NCSP, should be further investigated. Long-term follow-up studies of women with HSIL (CIN2/3) cervical abnormalities that evaluate the clinical use of p16 and other molecular biomarkers, alone or in combination, are needed to guide the management of this group of women.

Outcomes of various post-treatment screening scenarios in longitudinal studies are needed to inform future recommendations for test of cure. These should compare the 5-year cumulative risk of subsequent HSIL (CIN2+). Analysis by age groups (< 30 years and ≥ 30 years) would also be informative, as the specificity of HPV testing is lower in younger women.

The role of post-treatment HPV vaccination in unvaccinated women should be considered as a potential research activity.

Reference

MANAGEMENT OF GLANDULAR ABNORMALITIES

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

A/Professor Lyndal Anderson – Co-author
Professor Ian Hammond – Co-author
A/Professor Selvan Pather – Co-author
Mr. C. David H. Wrede – Co-author
Professor Gordon Wright – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

SEE THE FOLLOWING SECTIONS:

- Introduction
- Investigation of cytological glandular abnormalities
- Follow-up after excisional treatment for AIS
- Discussion
Management of glandular abnormalities

SCREENING
Cervical adenocarcinoma is associated with human papillomavirus (HPV) infection and can be detected by HPV testing.\(^1\) HPV has been identified in an estimated 99.7% of cervical carcinoma specimens.\(^2\) While 70% of squamous cervical cancers are related to oncogenic HPV types 16 and 18 an estimated 78% of adenocarcinomas are related to these two types\(^3\) and the proportion associated with HPV 18 is greater than for squamous cell carcinomas.\(^4\) Glandular abnormalities are also associated with a substantial risk of cervical intraepithelial neoplasia grade 3 (CIN3) and cervical cancer; in a large US cohort, 33% of HPV-positive women with a conventional cytology finding of atypical glandular cells developed CIN3 or a higher-grade lesion (CIN3+) and 9% developed cervical cancer within 5 years.\(^5\) Among women with the same cytology finding in whom oncogenic HPV was not detected, 0.93% developed CIN3+ and 0.37% developed cervical cancer.\(^5\) Glandular and squamous lesions commonly coexist,\(^5\) with CIN found in approximately half of women with endocervical adenocarcinoma in situ (AIS).\(^6\)\(^7\)

In Australia, adenocarcinoma accounts for approximately 25% of cervical carcinomas, while adenosquamous carcinoma accounts for approximately 4%.\(^8\) After an initial decrease from 2.8 new cases per 100,000 women in 1991, the incidence of adenocarcinoma has remained at around 2 new cases per 100,000 women.\(^9\)

Cervical screening based on cytology is less effective in preventing cervical adenocarcinoma than squamous cell carcinomas.\(^10\) Cervical cytology is less sensitive for the detection of glandular lesions than for the detection of squamous intraepithelial lesions and squamous cell carcinoma, due to sampling and interpretation issues.\(^11\) Primary HPV screening has been found to be more effective than cytology for the prevention of adenocarcinoma.\(^12\)

Cytological glandular abnormalities are also associated with polyps, metaplasia and adenocarcinomas of the endometrium, ovary, fallopian tube and other sites, which would not be detected through HPV based cervical screening.\(^13\) The detection and management of these conditions is outside the scope of this guideline.

CYTOLOGY

The Australian Modified Bethesda System (AMBS 2004) for reporting glandular abnormalities recognises the following categories (see Chapter 3. Terminology):\(^14\)

- atypical endocervical cells of undetermined significance/atypical glandular cells of undetermined significance
- possible high-grade glandular lesion
- AIS
- adenocarcinoma.

Glandular abnormalities are uncommonly reported on cytology. In Australia, the finding of atypical endocervical/ glandular cells of undetermined significance is reported in approximately 0.04% of cytology tests, possible high-grade endocervical glandular lesions in approximately 0.02–0.3%, AIS in approximately 0.01%, and adenocarcinoma in fewer than 0.01% of cytology tests.\(^8\)
INVESTIGATIONAL MODALITIES

Issues in the investigation and management of screen-detected glandular abnormalities differ from those for squamous abnormalities. These include the roles of HPV testing, colposcopy and endocervical sampling in the detection and investigation of cytological glandular abnormalities, and the optimal modality of excisional biopsy. Colposcopy may detect minimal cervical changes in women with a cytological prediction of AIS. Colposcopy has a low sensitivity for detecting endocervical lesions, and women with endocervical glandular abnormalities on cytology have a significant cancer risk even when colposcopy is normal.[9][10] The use of endocervical sampling (by endocervical curettage or cytobrush) in the investigation of glandular abnormalities has been controversial (see Chapter, 7. Colposcopy). [10] Endocervical brushing has higher sensitivity, is better tolerated, and produces fewer insufficient samples than endocervical curettage. However, grading may be more difficult for brush specimens.[11] Although recommended for women with a cytology finding of atypical glandular cells in Canadian and European guidelines, [12][13] endocervical curettage ECCIs not frequently practised in Australia and its role has been controversial. It has little place in the management of women with a high probability of neoplasia, but might improve the chance of identifying a glandular lesion when cytology suggests a possible high-grade glandular abnormality. [13] Guidelines for the pre-renewal National Cervical Screening Program (NCSP) advised that it could be considered as part of conservative management.[9]

The use of excisional biopsy modalities other than cold-knife cone in the investigation of cervical glandular abnormalities remains controversial (see Modalities of treatment in Chapter 7, Colposcopy).

See following sections:

- Investigation of cytological glandular abnormalities
- Follow-up after excisional treatment for AIS
- Discussion: Management of glandular abnormalities

References

Investigation of cytological glandular abnormalities

BACKGROUND

Atypical endocervical/glandular cells of undetermined significance

The clinical significance of atypical glandular or endocervical cells of undetermined significance cannot be clearly defined.\(^1\) The cytological finding of atypical endocervical/glandular cells is poorly reproducible.\(^2\) It predicts increased risk but cannot be considered a specific cancer precursor.\(^3\)

For conventional cytology within the pre-renewal NCSP, 24.2% of cases of atypical endocervical cells of undetermined significance predicted by cytology in 2012 (HPV status unknown) that were biopsied within 6 months were histologically confirmed as AIS and 6.2% of those biopsied were confirmed as adenocarcinoma.\(^1\) Among all cases of atypical endocervical cells of undetermined significance predicted by cytology in 2012, including cases where no histology was performed within 6 months, AIS was confirmed in 7.0% and adenocarcinoma in 1.8%.\(^1\)

In the Pap test-based screening era, the optimal management for women with atypical glandular or endocervical cells of undetermined significance has been uncertain.\(^4\) Guidelines for the pre-renewal NCSP recommended colposcopy as a mandatory component of the initial investigation for women with atypical glandular or endocervical cells of undetermined significance reported on conventional cytology following a screening Pap test.\(^4\)

With the transition to HPV-based cervical screening, it is necessary to define the roles of repeated HPV testing and liquid-based cytology in monitoring risk in women with a cytology finding of endocervical cells of undetermined significance or atypical glandular cells of undetermined significance.

Possible high-grade glandular lesion

Guidelines for the pre-renewal NCSP recommended that women with a Pap test result of possible high-grade glandular lesion should be referred to gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist.\(^4\)

For conventional cytology within the pre-renewal NCSP, 44.7% of cases of possible high-grade endocervical glandular lesions predicted by cytology in 2012 (HPV status unknown) were histologically confirmed as AIS and 11.4% were confirmed as adenocarcinoma.\(^1\) Among all cases of possible high-grade endocervical glandular lesions predicted by cytology in 2012, including cases where no histology was performed within 6 months, AIS was confirmed in 21.5% and adenocarcinoma in 5.5%.\(^1\)

AIS

AIS is considered to be the precursor to invasive endocervical adenocarcinoma.\(^5\) When well-defined cytological criteria are used, this category correlates well with histological outcome.\(^1\)

For conventional cytology within the pre-renewal NCSP, 63.3% of cases of AIS predicted by cytology in 2012 (HPV status unknown) were histologically confirmed as AIS and 26.7% were confirmed as adenocarcinoma.\(^1\) Among all cases of AIS predicted by cytology in 2012, including cases where no histology was performed within 6 months, AIS was confirmed in 57.1% and adenocarcinoma in 24.1%.\(^1\)

Guidelines for the pre-renewal NCSP recommended that women in whom AIS was reported on conventional cytology following a screening Pap test should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist, and if invasive carcinoma is not identified at colposcopic assessment, a cone biopsy should be undertaken.\(^4\)

The investigation and management of a cytological prediction of AIS is controversial. AIS lesions can present with only minimal changes on colposcopy and can extend into the endocervical canal. As a result the full extent of AIS lesions may not be evident on colposcopic examination which complicates the determination of excisional approaches.\(^5\) As AIS lesions can be multifocal, the finding of negative margins for AIS on an excision specimen does not reliably indicate that the lesion has been completely excised.\(^5\)

Invasive adenocarcinoma cannot be excluded without a diagnostic excisional procedure.\(^5\)

The role of excision modalities other than cold-knife cone biopsy in the investigation of cytology-detected glandular abnormalities has been debated. Submission of single-specimen biopsies with minimal thermal damage or disruption of resection margins permits the pathologist to make an accurate assessment. The pre-renewal NCSP guideline recommended that cold-knife cone biopsy should be considered the ‘gold standard’ for the assessment of glandular lesions, and specifically recommended against the use of large loop excision of the transformation zone (LLETZ).\(^5\) Current American Society for Colposcopy and Cervical Pathology (ASCCP) consensus guidelines recommend that any modality can be used for diagnostic excision of the transformation zone (TZ) in the treatment of AIS, provided that the specimen remains intact with interpretable margins and there is no fragmentation, including fragmentation resulting from ‘top-hat’ endocervical excisions (see Modalities of treatment in Chapter 7. Colposcopy).\(^5\)
Endocervical sampling at the time of an excisional procedure predicts residual disease in women with AIS.[2]

In women who have undergone excisional treatment for AIS, a HPV test finding of oncogenic HPV not detected predicts low risk of persistent or recurrent disease.[2] Conversely, a positive oncogenic HPV (any type) test result at any time during follow-up was reported as the most significant independent predictor of progressive disease in women with AIS undergoing conservative management.[2]

Adenocarcinoma

Guidelines for the pre-renewal NCSP recommended that women with a cytological prediction of adenocarcinoma of either endocervical, extruterine or unspecified origin, reported on conventional cytology following a screening Pap test, should be referred to a gynaecological oncologist or a gynaecological oncology unit.[4]

EVIDENCE

Immediate excision versus surveillance following a normal (negative) colposcopy for women with a positive oncogenic HPV test result and referral cytology predicting a glandular lesion less than AIS

Systematic review evidence

Systematic reviews were conducted to answer the following questions:

- For women who have a positive oncogenic HPV (any type) test result with referral cytological prediction of atypical endocervical cells of undetermined significance (confirmed on review) and negative colposcopy, what is the safety and effectiveness of repeating HPV and cytology testing, compared with diagnostic excisional cone biopsy?

- For women who have a positive oncogenic HPV (any type) test result with referral cytological prediction of atypical glandular cells of undetermined significance or possible high grade glandular lesion (confirmed on review) and negative colposcopy, what is the safety and effectiveness of repeating HPV and cytology testing, compared with treatment (excisional cone biopsy)?

The systematic literature searches identified no relevant randomised or pseudorandomised controlled trials comparing surveillance with excisional cone biopsy following a normal (negative) colposcopy for HPV-positive women with cytology suggestive of a glandular lesion less than AIS. The search strategies and inclusion and exclusion criteria used are described in detail in the Technical report.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed on the management of HPV-positive women with a confirmed cytological finding of atypical endocervical cells of undetermined significance, atypical glandular cells of undetermined significance, or possible high-grade glandular lesion, and normal (negative) colposcopy to inform consensus-based recommendations.

For women with any glandular cytology less that AIS and a normal (negative) colposcopy:

AIS or CIN 2+ was diagnosed in 15% of 27 women in a cohort with a cytological finding (Bethesda 2001 criteria) of atypical glandular cells (endometrial or endocervical, not otherwise specified or ‘favor neoplastic’) with a normal (negative) colposcopy followed by biopsy or cytological follow-up at 6 months.[4]

In contrast, in a cohort of 15 women with ‘borderline glandular cytology’ and a normal (negative) colposcopy none had CIN 2+ on biopsy or abnormal cytology on follow-up at 6, 12, 18 and 24 months.[7]

For women with cytology predicting a possible high grade glandular lesion and a normal (negative colposcopy):

In a series of 27 endocervical dyskaryotic smears (considered by the investigators to be equivalent to ‘atypical glandular cells endocervical – favor neoplastic’), followed by a normal (negative) colposcopy, 85.2% had a cervical lesion (type not described) on either LLETZ, cervical punch biopsy or laser cone biopsy.[8]

International (US, Canadian and European) guidelines recommend varying degrees of surveillance following a negative colposcopy for the management of ‘atypical glandular cells - not otherwise specified’ (or equivalent).[2][9][10]

US and Canadian guidelines recommend diagnostic excision of the TZ /cone biopsy following a negative colposcopy for the management of women with ‘atypical glandular cells - favor neoplasia’.[2][10]

A summary of the literature considered can be found in the Technical report.
For women with a positive oncogenic HPV test result with atypical glandular/endocervical cells and a normal (negative) colposcopy, the risk of CIN 2+ disease is unclear. The evidence is inconsistent and is derived from small cohorts that may have included women with possible high-grade glandular lesions and that did not consider HPV status. The difficulties associated with colposcopic prediction of glandular lesions, the high rates of CIN 2+ associated with atypical glandular/endocervical cells in Australia,[1] and the high risk associated with atypical glandular cells in the presence of a positive oncogenic HPV test result, support a recommendation for close follow-up surveillance using a combination of oncogenic HPV testing and LBC (co-testing). A negative co-test is defined as a test in which both oncogenic HPV is not detected and LBC is reported negative.

For women with high-grade glandular abnormalities, the evidence strongly supports the use of diagnostic excision of the TZ for these women. In the pre-renewal NCSP, a cytology report predicting a possible high-grade glandular abnormality was associated with a substantial risk of underlying AIS (44.7% of cytology biopsied within 6 months; 21.5% of all cytology) and invasive cancer (11.4% of cytology biopsied within 6 months; 5.5% of all cytology).[2]

COLD-KNIFE CONE BIOPSY VERSUS OTHER EXCISIONAL MODALITIES

Systematic literature review evidence

A systematic review was conducted to assess the safety and effectiveness of excision modalities in women with a positive oncogenic HPV test result with a cytological prediction of possible high-grade glandular or definite high-grade glandular lesion (AIS), or histologically-confirmed AIS. The systematic review compared cold-knife cone biopsy with diathermy excision procedures (loop electrosurgical excision procedure [LEEP], LLETZ), Fischer cone, laser cone, straight wire excision of the TZ (SWETZ) or needle excision of the TZ (NETZ).

The systematic literature searches identified no relevant randomised or pseudorandomised controlled trials addressing this question in women with a positive HPV test result. The search strategies and inclusion and exclusion criteria are described in detail in the Technical report.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature comparing excisional modalities for women with a cytological prediction of possible high-grade glandular or definite high-grade (AIS) glandular lesion, or histologically-confirmed AIS (irrespective of HPV status) was undertaken to inform consensus-based recommendations.

Generally, positive or close margins were associated with an increased risk of disease persistence and recurrence and were more likely with LLETZ.[11][12][13][14][15]

A 2014 systematic review[12] using pooled data from cohort and case series studies found that positive margins were associated with a higher risk of residual and recurrent disease, and that higher rates of incomplete excision were associated with LLETZ (51%) than with cold-knife cone biopsy (30%) or laser cone (28%). This review reported rates of recurrence of AIS ranging from 9% to 29% after LLETZ and from 6% to 11% after cold-knife cone biopsy and concluded that the safety of LLETZ was comparable to that of cold-knife cone biopsy when negative margins were achieved.[15]

In Australia

The findings included two Australian studies:

- A retrospective population based cohort study of 338 women (Cervical Screening Register of WA) Munro 2015[11] reported that after adjusting for margin status, no significant differences in cancer outcomes between women with AIS who underwent LEEP or cold-knife cone biopsy after a median follow-up of 3.6 years. In this study LEEP was associated with a greater likelihood of more than one surgical specimen being excised during the procedure compared to cold-knife cone biopsy. The authors noted the need for prospective studies to confirm these findings.

- A retrospective cohort study based on review of hospital records (Royal Prince Alfred Hospital, Sydney)[16] reported no significant differences in cancer outcomes after 9–10 years of post-treatment surveillance between women with AIS who underwent laser cone or cold-knife biopsy.

This body of evidence should be interpreted with caution: at best, it is based on small retrospective cohort studies in which the decision to perform a particular procedure was likely based on the clinical judgement or preference of the treating physician, and the possible inclusion of procedures undertaken for diagnostic rather than therapeutic reasons – a scenario in which positive surgical margins are not a consideration. On the basis of this evidence, it remains unclear as to whether any electrosurgical techniques are as effective and safe as cold-knife cone biopsy. Randomised controlled trials are required to provide a definitive answer.

A summary of the literature considered can be found in the Technical report.
RECOMMENDATIONS
Atypical glandular/endocervical cells of undetermined significance recommendations

Flowchart 11.1: Management of LBC predicting atypical glandular/endocervical cells of undetermined significance

CONSENSUS-BASED RECOMMENDATION*

REC11.1: Colposcopy referral for atypical glandular/endocervical cells
Women who have a positive oncogenic HPV (any type) test result with a LBC report of atypical glandular/endocervical cells of undetermined significance should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist.

CONSENSUS-BASED RECOMMENDATION*

REC11.2: Follow-up after normal colposcopy and LBC prediction of atypical glandular/endocervical cells
Women who have a positive oncogenic HPV (any type) with a LBC prediction of atypical glandular/endocervical cells of undetermined significance and normal colposcopy can be offered repeat co-testing (HPV and LBC) at 6–12 months:

- If the follow-up co-test is negative, co-testing should be repeated annually until the woman has two consecutive negative co-tests, after which she can return to 5-yearly screening.
- If there is either a positive oncogenic HPV (any type) test result or an abnormal LBC (any report other than negative), the woman should be referred for colposcopic assessment, and diagnostic excision of the TZ should be considered.
PRACTICE POINT

REC11.3: Exclusion of upper genital tract disease before diagnostic excision

For women who have a positive oncogenic HPV test result (any type) and who have atypical glandular/endocervical cells of undetermined significance on cytology, investigation of the upper genital tract (endometrium, fallopian tube or ovary) using endometrial sampling and/or pelvic ultrasound should be considered, before diagnostic excision of the TZ is performed or the woman is advised to return for colposcopy and further tests in 6–12 months, in these groups of women:

- women aged over 45 years
- women aged over 35 years with a BMI greater than 30
- women diagnosed with polycystic ovarian syndrome
- women with abnormal vaginal bleeding.

PRACTICE POINT

REC11.4: Role of immediate diagnostic excision of TZ versus observation

Immediate diagnostic excision of the TZ can be considered for women with atypical glandular/endocervical cells of undetermined significance if they prefer not to take a conservative observational approach. This might apply to:

- women aged over 45 years
- women who have completed childbearing
- women who are particularly anxious about their cancer risk.

See Excision of the endocervical transformation zone.

Possible high-grade glandular lesion recommendations

Flowchart 11.2. Management of LBC prediction of a possible high grade glandular lesion

LBC prediction of possible high-grade glandular lesion

- Normal TZ
 - Type 3 excision (older women or patient preference)
- Abnormal TZ
 - High grade epithelial lesion (squamous or glandular)
 - Type 3 excision TZ (cone)
 - Overt cancer
 - Refer to gynaecological oncologist
- Type 1 or 2 TZ
 - Colposcopy and co-test in 6 months
- Type 3 TZ
 - Colposcopy
CONSSENSUS-BASED RECOMMENDATION

REC11.5: Colposcopy for possible high-grade glandular lesions

Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of possible high-grade glandular lesion should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or a gynaecological oncologist.

Diagnostic excision of the endocervical TZ should be performed in most cases.

PRACTICE POINT

REC11.6: Women who decline treatment for possible high-grade lesions

Women with a LBC prediction of possible high-grade glandular lesion who decline the recommended excision should be offered surveillance with co-testing (HPV and LBC) and colposcopy in 6 months:

- If in 6 months the woman has a positive result, she should be encouraged to have a diagnostic excision of the TZ.
- It is important that the woman understands the potential risk of underlying disease (21.5% risk of AIS and 5.5% risk of invasive cancer).

See Excision of the endocervical transformation zone.

Endocervical adenocarcinoma in situ (AIS) recommendations

Flowchart 11.3. Management of LBC prediction of high grade glandular lesion (AIS)
CONSENSUS-BASED RECOMMENDATION*

REC11.7: Colposcopy referral for AIS

Women with a LBC prediction of AIS should be referred to a gynaecologist with expertise in the colposcopic evaluation of suspected malignancies or to a gynaecological oncologist. Diagnostic excision of the endocervical TZ should be performed.

See Follow-up after excisional treatment for AIS.
See Excision of the endocervical transformation zone.

Adenocarcinoma recommendation

CONSENSUS-BASED RECOMMENDATION*

REC11.8: Referral to gynaecological oncologist for LBC prediction of invasive disease

Women who have a positive oncogenic HPV (any type) test result with a LBC prediction of invasive adenocarcinoma should be referred to a gynaecological oncologist or a gynaecological oncology centre for urgent evaluation, ideally within 2 weeks.

Table 11.1. Roles of investigational modalities in the assessment of LBC prediction of a glandular lesion

<table>
<thead>
<tr>
<th>Cytology</th>
<th>Colposcopy</th>
<th>Target biopsy</th>
<th>Diagnostic excision of the transformation zone</th>
<th>Endocervical sampling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atypical endocervical/glandular cells of undetermined significance</td>
<td>Indicated</td>
<td>Indicated if visible lesion at colposcopy</td>
<td>Not indicated in investigation of initial cytology report</td>
<td>Can be considered</td>
</tr>
<tr>
<td>Possible high-grade glandular lesion</td>
<td>Indicated</td>
<td>Indicated if visible lesion at colposcopy</td>
<td>Indicated</td>
<td></td>
</tr>
<tr>
<td>AIS</td>
<td>Indicated</td>
<td>Indicated if visible lesion at colposcopy</td>
<td>Indicated</td>
<td>Can be considered</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>Indicated</td>
<td>Indicated for clinical invasive carcinoma</td>
<td>Indicated if no clinically apparent invasive lesion</td>
<td>Not useful</td>
</tr>
</tbody>
</table>

See Excision of the endocervical transformation zone.
Excision of the endocervical transformation zone recommendations

CONSENSUS-BASED RECOMMENDATION

REC11.9: Specimen for histological assessment of glandular abnormalities

When diagnostic excision of the TZ is performed in the investigation of glandular abnormalities, the method chosen should ensure that a single, intact specimen with interpretable margins is obtained for histological assessment.

PRACTICE POINT

REC11.10: Cold-knife cone biopsy is the ‘gold standard’ for glandular abnormalities

Cold-knife cone biopsy should be considered the ‘gold standard’ for the diagnostic assessment of glandular lesions. However, a diathermy excisional procedure may be appropriate in some circumstances and could provide an appropriate surgical specimen when performed by a gynaecologist with appropriate training, experience and expertise.

PRACTICE POINT

REC11.11: Size of cone biopsy

The depth and extent of the cone biopsy should be tailored to the woman’s age and fertility requirements. A Type 3 Excision of the TZ is usually required.

PRACTICE POINT

REC11.12: Cone biopsy excision margins and multifocal AIS

Multifocal disease has been reported in 13–17% of cases of AIS, though the majority of lesions are unifocal. If the margin is close but apparently excised (less than 5 mm), close surveillance by Test of Cure, as recommended in these guidelines, is considered appropriate. In this situation further excision is not considered necessary.

See also Modalities of treatment in Chapter 7. Colposcopy.

BENEFITS AND HARMs

Invasive adenocarcinoma of the cervix has not reduced in incidence since the introduction of the NCSP. These recommendations, in concert with HPV testing in primary screening, should lead to improvements in prevention of invasive adenocarcinoma. Recent Australian data showing a high positive predictive value for AIS or invasive cancer, when the referral cytology prediction is atypical endocervical cells of undetermined significance or possible AIS, supports a more aggressive approach to investigation in these women.

A potential harm is unnecessary treatment in women who do not have significant disease. However, this would be balanced by the detection of significant disease in a large proportion of these women, who are more likely to be identified by primary HPV screening in the renewed NCSP.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

The recommendations for diagnosis and treatment of screen-detected glandular abnormalities are similar to those in current practice. However, surveillance of women treated for AIS now involve co-testing on an annual basis indefinitely until sufficient data has been obtained to limit the time of follow-up.

Resourcing

Because the recommendations are similar to those in the pre-renewal NCSP, no substantial resource implications are expected.

Barriers to implementation

Because the recommendations are similar to those in the pre-renewal NCSP, no substantial barriers to implementation are expected.
References

Follow-up after excisional treatment for AIS

BACKGROUND

Guidelines for the pre-renewal NCSP\(^1\) recommended:

- that decisions about management of histologically confirmed AIS should take into account the woman’s age, fertility status, and excision margins
- hysterectomy for women with histologically confirmed AIS who have completed childbearing
- that hysterectomy should not be undertaken as a treatment for AIS without first performing a cone biopsy to exclude invasive carcinoma

that women with histologically confirmed invasive adenocarcinoma on cone or punch biopsy should be referred to a gynaecological oncologist or a gynaecological oncology unit.\(^1\)

For women who wish to maintain fertility and choose cytological surveillance rather than hysterectomy, the risk of recurrent AIS has been estimated at less than 10% and there is a very small risk of invasive adenocarcinoma, even when excision margins are negative.\(^2\)

EVIDENCE

Systematic review evidence

A systematic review was undertaken to assess the safety and effectiveness of different follow-up options for women with AIS after an excisional procedure (cone excision or LEEP) with complete excision confirmed histologically:

- completion hysterectomy
- repeat co-testing at 12 and 24 months after excision, returning to routine screening if both tests are negative at both follow-up points
- annual cytology only.

The systematic literature search identified no relevant randomised or pseudorandomised controlled trials comparing different follow-up options for women who have undergone an excisional procedure for AIS. The search strategies and inclusion and exclusion criteria used are described in the Technical report.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed on the follow-up of women who have undergone excisional treatment for AIS to inform the drafting of relevant consensus-based recommendations.

Two prospective cohort studies\(^3\)^\(^4\) reported cancer outcomes for women with histologically confirmed AIS managed conservatively after excisional biopsy.

For women diagnosed with AIS on cone biopsy (almost 50% with involved margins) and followed up for 3 years, the presence of involved margins and oncogenic-HPV types detection on follow-up were associated with an increased risk of progressive disease.\(^3\)^\(^4\)

In a cohort of women who had follow-up including colposcopy and endocervical curettage every 6 months, residual disease was subsequently diagnosed in 55% of 20 women who had involved margins at baseline and 28.6% of the 21 women who had free margins at baseline. Twelve of the 13 women who underwent hysterectomy for persistent positive margins had residual disease including four adenocarcinomas and one squamous cell carcinoma.\(^3\)^\(^4\) Follow-up using HPV testing had a higher sensitivity and better negative predictive value than cytology when using a colposcopy and histology reference standard.\(^3\)^\(^4\) Sensitivity and negative predictive values were further improved when co-testing was used. These findings demonstrate that colposcopy has limited ability to detect glandular disease. In this study of 42 AIS cases, the initial colposcopy was normal in 16% of cases and the squamocolumnar junction was not visible in 55% cases.

The findings are described in more detail in the Technical report.

Although the evidence is limited, the findings suggest that women with AIS and clear margins can be safely followed up by annual co-testing for at least 3 years.

There was no evidence comparing completion hysterectomy with ongoing surveillance by co-testing. However, hysterectomy is not routinely required, based on expert opinion.
CONSENSUS-BASED RECOMMENDATION*

REC11.13: Follow-up of completely excised AIS

Women with histologically confirmed AIS who have undergone complete excision with clear margins should have annual co-testing indefinitely.†

If any abnormal result is obtained on follow-up co-testing, the woman should be referred for colposcopic assessment.

† Until sufficient data become available that may support a policy decision that cessation of testing is appropriate.

CONSENSUS-BASED RECOMMENDATION*

REC11.14: Repeat excision for incompletely excised AIS

If AIS is incompletely excised (positive endocervical margin and/or deep stromal margin, not ectocervical margin) or if the margins cannot be assessed, further excision to obtain clear margins should be performed.

CONSENSUS-BASED RECOMMENDATION

REC11.15: Role of hysterectomy in AIS

In women who have been treated for AIS by excision, with clear margins, there is no evidence to support completion hysterectomy. In this situation, hysterectomy is not recommended.
11. CERVICAL CANCER IN AUSTRALIA

MANAGEMENT OF GLANDULAR ABNORMALITIES

BENEFITS AND HARMs
Long-term surveillance after treatment for AIS will provide women with reassurance about detecting recurrent AIS and thus preventing invasive disease.

A positive oncogenic HPV (any type) test result has been shown to be a very good predictor of recurrent disease over the few years following treatment. Conversely, a HPV test in which oncogenic HPV is not detected has been shown to be a very good predictor of absence of recurrent disease over the few years following treatment in women with complete excision of AIS. This supports a surveillance approach using co-testing which will provide reassurance to women.

Women who persistently have a positive oncogenic HPV test result, but have no cytological abnormality suggestive of glandular disease, will be referred for colposcopic assessment to exclude occult disease. This recommendation may result in colposcopy for some women who would not have developed a clinically significant endocervical glandular lesion, with potential harms including the physical and psychological harms associated with colposcopy. However, this, should be offset against the additional reassurance provided by referral in this situation.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice
The recommended Test of Cure for women treated for AIS using annual co-testing will lead to more intensive surveillance than under pre-renewal NCSP guidelines. However, this will enable the collection of valuable data on AIS recurrence and its detection, which will inform future practice.

Eventually, when more accurate risk assessment is possible, long-term surveillance may not be necessary for women who complete a specified duration of Test of Cure. Until more information is available, however, follow-up will be for an indefinite period.

Resourcing
Indefinite follow-up for AIS now involves co-testing rather than cytology alone (as in the pre-renewal program), so more HPV tests will be performed in follow-up to enable management of this group.

Whilst at this time indefinite co-testing is recommended, the ongoing monitoring of the renewed NCSP may provide data in the future to support the safety of discharging women who have had a negative co-test on multiple occasions at an earlier point.

Barriers to implementation
Women may not understand the importance of long-term surveillance for treated AIS and may fail to attend for test of cure. It will be important to educate women, and their health professionals, about the importance of long-term surveillance.

References
Discussion: Management of histologically confirmed high-grade squamous abnormalities

UNRESOLVED ISSUES
Whilst at this time indefinite co-testing is recommended, the ongoing monitoring of the renewed NCSP may provide data in the future to support the safety of discharging women who have been negative for both HPV and cytology on multiple occasions at an earlier point.

FUTURE RESEARCH PRIORITIES
Well-designed prospective research studies are needed to compare the use of cold knife cone biopsy with diathermy loop excision (LEEP or LLETZ) in the diagnosis and treatment of AIS. If such a study were to show that loop excision was non-inferior to cold-knife cone biopsy for the outcomes of post-treatment recurrent and adenocarcinoma, loop excision could be recommended as an appropriate treatment option for AIS. This would benefit women because, unlike cold-knife cone procedures, loop excision does not require hospital admission and general anaesthesia.

Studies evaluating endocervical curettage would provide useful evidence to determine its role in clinical practice.

Long-term data from the National Cancer Screening Register should be analysed to determine the minimal effective surveillance period for women undergoing annual Test of Cure for post-treatment AIS before returning to routine 5-yearly screening.
SCREENING IN ABORIGINAL AND TORRES STRAIT ISLANDER WOMEN

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
Dr Joanne Mountford – Co-author
Ms Lisa Whop – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Screening in Aboriginal and Torres Strait Islander women

BACKGROUND
Cervical cancer incidence and mortality rates are higher among Aboriginal and Torres Strait Islander women than non-Aboriginal and Torres Strait Islander women.[1] The current National Cervical Screening Program (NCSP) does not make separate policy recommendations for Aboriginal and Torres Strait Islander women. Limited available evidence on participation in cervical screening by Aboriginal and Torres Strait Islander women suggests that they are under-screened.[2] The Australian Government Department of Health recognises that there are cultural, linguistic and physical barriers to cervical screening for these women.[2]

EVIDENCE
Systematic review evidence
The systematic literature search identified no randomised or pseudorandomised controlled trials that examined modified screening strategies for Aboriginal and Torres Strait Islander women, compared with the strategy recommended for the general population: primary human papillomavirus (HPV) test-based screening with partial genotyping every 5 years for women aged 25–69 years, immediate referral to colposcopy for women with a positive oncogenic HPV (16/18) test result, and cytology triage for women with a positive oncogenic HPV (not 16/18) test result.

The search strategy and inclusion and exclusion criteria are described in detail in the Technical report.

General literature review evidence
In the absence of any direct evidence from the systematic review, a general review of the literature was performed to identify current evidence-based clinical practice guidelines for cervical screening, and studies evaluating screening strategies, for Aboriginal and Torres Strait Islander women.

No relevant evidence-based clinical practice guidelines based on systematic reviews of evidence were identified. No studies were found that directly compared alternative screening strategies for Aboriginal and Torres Strait Islander women.

A general literature search was also conducted to quantify the relative risk of and burden of cervical cancer among women of Aboriginal and Torres Strait Islander descent, compared with the general Australian female population. The search strategies and findings are described in detail in the Technical report.
The literature review made the following findings:

A national retrospective study found that, between 1998 and 2005, the age-standardised incidence rate for cervical cancer was 2.7 times higher (95% confidence interval 2.2–3.2) for Aboriginal and Torres Strait Islander women (20 per 100,000) than for non-Aboriginal and Torres Strait Islander women (7 per 100,000). In 2005–2009, the age-standardised incidence rate of cervical cancer slightly improved, at 2.3 times higher for Indigenous women as for non-Aboriginal and Torres Strait Islander women. Chapter 1. Cervical cancer in Australia shows incidences of cervical cancer and cervical cancer outcomes by Indigenous status. See also the tables in the literature review report.

There are no current national data on screening participation by Aboriginal and Torres Strait Islander women. This is primarily because Aboriginal and Torres Strait Islander status is not recorded on pathology forms (the primary source of data for Pap test registers). It is expected that the renewal of the NCSP will provide an opportunity to correct this situation. This will require a coordinated strategy involving primary health care, pathology practices, and the National Cancer Screening Register (NCSR).

National data from primary healthcare organisations funded by the Department of Health to provide services to Aboriginal and Torres Strait Islander people show that, in December 2013, 32% of the Aboriginal or Torres Strait Islander women who were regular clients of these services had undergone a cervical screening test in the previous 2 years, 40% had been tested in the previous 3 years, and 46% had been tested in the previous 5 years. However, these records may not capture screening visits if clients had undergone screening outside their usual primary healthcare organisation.

A cross-sectional study reported that the age-adjusted prevalence of oncogenic HPV genotypes was similar for Aboriginal or Torres Strait Islander women and non-Aboriginal and Torres Strait Islander women, both overall and in each age group (31.3% versus 30.0% respectively, overall). The prevalence of HPV 16/18 was also similar in each age group for Aboriginal or Torres Strait Islander women and non-Aboriginal and Torres Strait Islander women, however oncogenic HPV (not 16/18) types were more common in Aboriginal or Torres Strait Islander women aged 31–40 (35.0%) than in non-Aboriginal and Torres Strait Islander women the same age (22.5%). The prevalence of HPV DNA (including oncogenic and non-oncogenic types) was higher for Aboriginal and Torres Strait Islander women than for non-Aboriginal and Torres Strait Islander women when standardised to the general Australian population (47.5% versus 41.5%). However this finding was driven by differences in the prevalence of low-risk (non-oncogenic) HPV genotypes (28.7% versus 24.8%), and confidence intervals overlapped in both cases.

National data are not available on HPV vaccine coverage in Aboriginal and Torres Strait Islander girls. In Queensland and the Northern Territory, HPV vaccination rates during the catch-up program (girls aged 12–17 years in 2007) were lower among Aboriginal and Torres Strait Islander girls, compared with non-Aboriginal and Torres Strait Islander girls, but the magnitude of the difference and patterns were different between the two jurisdictions. In Queensland there was only a marginal difference in the percentage of girls who started the course (4%) but the completion rates were lower amongst Aboriginal and Torres Strait Islander girls such that there was a 15% lower three dose coverage rate overall. In contrast in the Northern Territory, Aboriginal and Torres Strait Islander girls were less likely to start the course but amongst those who did the completion rate was identical, resulting in an overall 9% lower three dose coverage rate. These data suggest that any barriers to commencement and completion of HPV vaccination courses may vary for Aboriginal and Torres Strait Islander people living in different parts of Australia. Coverage data have not been published for Aboriginal and Torres Strait Islander girls vaccinated after 2008.

A national ecological study reported that the reduction in hospital admissions involving a diagnosis of genital warts in the first 4 years after the inception of the National HPV Vaccination Program was similar in young Aboriginal or Torres Strait Islander women and non-Aboriginal and Torres Strait Islander women (86.7% versus 76.1%; 95% confidence intervals overlapped).

Synthesis

Current evidence does not support the use of a more intensive screening strategy for Aboriginal and Torres Strait Islander women. To date, the NCSP has not been successful in reducing the incidence and mortality of cervical cancer among Aboriginal and Torres Strait Islander women. More effective strategies are needed to increase their participation in the NCSP. Strategies for improving equity, accessibility, effectiveness and cultural sensitivity of cervical screening services for Aboriginal and Torres Strait Islander women should be explored. Data collection systems should be improved to ensure that accurate data for Aboriginal and Torres Strait Islander women are available for inclusion in the NCSR.
RECOMMENDATIONS

CONSENSUS-BASED RECOMMENDATION

REC12.1: Cervical Screening for Aboriginal and Torres Strait Islander women

Aboriginal and Torres Strait Islander women should be invited and encouraged to participate in the NCSP and have a 5-yearly HPV test, as recommended for all Australian women.

PRACTICE POINT

REC12.2: Invitations to screen for Aboriginal and Torres Strait Islander women

Specific efforts should be made to maximise delivery of invitations to Aboriginal and Torres Strait Islander women.

PRACTICE POINT

REC12.3: Cervical screening services for Aboriginal and Torres Strait Islander women

Specific efforts should be made to provide screening, diagnostic and treatment services that are accessible and culturally appropriate to Aboriginal and Torres Strait Islander women.

PRACTICE POINT

REC12.4: Data collection and recording Aboriginal and Torres Strait Islander status

Healthcare professionals should ask all women whether they identify as Aboriginal or Torres Strait Islander, and a woman’s Aboriginal and Torres Strait Islander status should be recorded on the pathology request form in accordance with the ABS classification and standards.

BENEFITS AND HARMs

In the absence of evidence to support specifically tailored screening protocols for Aboriginal and Torres Strait Islander women, participation in the NCSP is expected to reduce rates of cervical cancer among Aboriginal and Torres Strait Islander peoples.

Invitations to participate in screening may cause unnecessary anxiety for some Aboriginal and Torres Strait Islander women if they have not received adequate education and explanation about cervical cancer and its link with HPV infection. Culturally sensitive education should be implemented to minimise this potential harm.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

Healthcare professionals who provide screening services for Aboriginal and Torres Strait Islander women need to be able to allocate enough time to provide education about screening and encouragement to participate in the program.

Improved resources for cervical screening for Aboriginal and Torres Strait Islander women should be made available.

For all women who present for cervical screening the healthcare professional should ascertain the woman’s Aboriginal and Torres Strait Islander status and record this on the pathology request form and it is anticipated that this data will be collected by the National Cancer Screening Register.
Resourcing
There may be too few nurses or Aboriginal health workers adequately trained as cervical screening test providers. Training more personnel will have cost implications. There is evidence from Queensland that the introduction of LBC for cervical screening in a remote high-risk population (mainly Aboriginal and Torres Strait Islander people) led to a reduction in the rate of unsatisfactory smears. In the Renewed program it anticipated that this benefit will be continued.

Barriers to implementation
Due to the transient nature of some Aboriginal and Torres Strait Islander women they may not receive an invitation to participate in the NCS if their mailing address has changed. Aboriginal and Torres Strait Islander women may refuse the invitation for cultural reasons or a lack of understanding about cervical cancer and its prevention. Education about HPV testing and prevention of cervical cancer is very important, and should be delivered in culturally sensitive and appropriate ways, by people in whom these women have confidence. Aboriginal and Torres Strait Islander women, especially those in rural and remote areas, often use the services of nurses and Aboriginal Health workers who are trained cervical screening test providers. The aim is to provide the most appropriate service for individual women. Workers and women can be facing multiple barriers to providing cervical screening including other health and social issues that may be a priority during an appointment. Most importantly, it can take time for workers to build trust and educate women about the need for screening.

Discussion
UNRESOLVED ISSUES
Data regarding Indigenous status are not currently routinely collected by the Cervical Screening Registers and this prevents the accurate assessment of cervical screening issues in Aboriginal and Torres Strait Islander women. The Renewed NCS aims to collect these data.

FUTURE RESEARCH PRIORITIES
Strategies to improve recruitment of Aboriginal and Torres Strait Islander women should be developed, implemented and evaluated. Consideration could be given to the development and evaluation of culturally appropriate information to support the invitation to screen. More research is required to determine why cervical screening participation in some specific communities in the Northern Territory and Queensland is higher than in others, and to translate the approaches of the more highly screened communities to the wider Aboriginal and Torres Strait Islander population.

References
SCREENING AFTER TOTAL HYSTERECTOMY

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
A/Professor Deborah Bateson – Co-author
A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
Dr Joanne Mountford – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Screening after total hysterectomy

BACKGROUND
Total hysterectomy involves the removal of the cervix and the uterus and closure of the top of the vaginal canal, creating a vaginal vault. Removal of the cervix eliminates the risk of developing a cervical cancer and the need for cervical cytology. However, cytology of the vaginal vault can enable screening for pre-invasive disease of the vagina such as vaginal intraepithelial neoplasia (VAIN) or recurrence of previously treated cervical or vaginal cancer.

High-grade cervical intraepithelial neoplasia (CIN), prior to or at the time of total hysterectomy, is a known risk factor for the development of secondary VAIN, with reported recurrence rates of 0.9–7.4%. However, VAIN is far less common than CIN and the incidence of vaginal cancer is less than a third of the incidence of cervical cancer, accounting for less than 0.5% of all cancers in Australian women.

Based on an analysis of data from long-term follow-up studies conducted in women treated for high-grade CIN, Soutter et al found that, in the context of cytology follow-up after hysterectomy, the rate of invasive disease remained elevated in comparison with the rate in the general population, until at least 20 years after treatment. Long-term vaginal cytology follow-up of hysterectomised women with a history of high-grade CIN has been recommended, but it should be noted that this recommendation was prior to the introduction of HPV testing. Pre-renewal National Cervical Screening Program (NCSP) guidelines recommended that women undergoing hysterectomy for high-grade CIN should be advised to continue annual cytologic surveillance, and noted the need for further investigation of the role of human papillomavirus (HPV) testing for this group.

Since 2006 under the pre-renewal NCSP, co-testing with HPV testing and cervical cytology has been used in Australia in the follow-up of women treated for high-grade CIN by ablation or excision of the transformation zone (TZ). A negative co-test is defined as a test occasion at which oncogenic HPV is not detected and the cytology report is negative. Women with two consecutive negative co-testing results during annual co-testing were returned to routine 2-yearly screening. This ‘Test of Cure’ approach, is based on the high negative predictive value of co-testing in identifying women at risk of recurrence. Comparison of screening outcomes for this strategy with those under pre-2006 guidelines, has shown this strategy to be safe.

At this time it is uncertain whether a shorter period of surveillance could be recommended in the future. The safety of discharging women back to routine screening after only one occasion on which oncogenic HPV is not detected, or only one negative co-test, has not yet been conclusively established in Australia.

GENERAL LITERATURE REVIEW EVIDENCE
Structured literature searches were conducted to ascertain the effectiveness of further screening with vaginal vault cytology or HPV tests in hysterectomised women in each of the following groups:

1. women who have never had abnormal cytology or a positive oncogenic HPV test result
2. women with a history of a positive oncogenic HPV test result and cytological prediction of a high-grade lesion (squamous or glandular), or women who have recently completed treatment for a high-grade lesion who are under surveillance or have returned to routine screening after treatment, with no evidence of abnormality on the hysterectomy specimen
3. women who have had a high-grade abnormality treated by total hysterectomy, with complete excision of the lesion in the hysterectomy specimen
4. women who had completed Test of Cure after treatment for CIN2+ before hysterectomy, with no abnormality in the hysterectomy specimen.
Three relevant recent articles were identified that reported data from women who had undergone total hysterectomies for benign conditions. In a prospective study, 4% of women (4 cases out of 102) who had undergone hysterectomy for uterine fibromatosis developed VAIN after a mean latency period of 10 years. All cases tested HPV16 positive at the time of VAIN diagnosis and had a positive cytology test. Two years after treatment for VAIN, two women previously diagnosed with VAIN 3 recurred and tested HPV16 positive at the time of relapse. The presence or absence of any abnormal cytology or HPV history could not be ascertained from the articles. Based on aggregated data from studies identified by a systematic review of the literature, Stokes-Lampard et al reported that 1.8% of women who had had a hysterectomy for a benign indication had an abnormal smear and no cancers were detected.

No relevant recent articles were identified that reported outcomes for women with a history of high-grade abnormalities who:

- had been treated and were undergoing surveillance
- had completed a Test of Cure and had returned to routine screening prior to having a total hysterectomy with no evidence of any abnormality in the hysterectomy specimen.

A small number of retrospective studies in women with abnormal vaginal cytology after hysterectomy were identified. Although based on small samples (15–125 women), the results of these studies suggested that women who have had a total hysterectomy for CIN should continue post-treatment surveillance.

One small prospective study which aimed to identify prognostic factors for the development of VAIN found that oncogenic HPV DNA was identified in seven out of eight women who developed VAIN post-hysterectomy.

Soutter et al performed a meta-analysis of 26 cohorts who had received hysterectomy treatment. They found that there was no significant difference in the incidence of invasive recurrence between those series in which women were treated with a total hysterectomy and those in which one of the conservative methods of treatment (ablation or excision) was used. The authors concluded that follow-up for women after hysterectomy for CIN should be the same as for women treated conservatively.

Taken together, these findings provide evidence to support ongoing surveillance for hysterectomised women with a history of high grade CIN, but apply to screening and surveillance using cervical cytology alone. These findings are less relevant to the renewed NCSP, which is based on primary HPV testing, and within which post-treatment surveillance is based on co-testing (HPV and LBC).

RECOMMENDATIONS

Women who have had a total hysterectomy do not need further surveillance if both the following conditions apply:

- The woman has been treated for histologically confirmed HSIL and has completed Test of Cure according to pre-renewal NCSP guidelines implemented since 2006.
- No evidence of cervical pathology was detected on the hysterectomy specimen.

Women who have had a total hysterectomy should be advised to complete Test of Cure if they have been treated for histologically confirmed HSIL, but have not completed Test of Cure.

Women who have had a total hysterectomy (for any of the reasons listed in Flowchart 13.1) and who have completed Test of Cure do not need any further surveillance or testing.

Women who have had subtotal hysterectomy (cervix remains in situ) should be screened every 5 years with a HPV test. Any abnormalities should be managed according to the relevant recommendations in these guidelines.
Flowchart 13.1. Vaginal screening after total hysterectomy

Table 13.1. Vaginal screening after total hysterectomy

<table>
<thead>
<tr>
<th>PRIOR SCREENING HISTORY</th>
<th>TOTAL HYSSTERECTOMY†</th>
<th>INDICATION FOR HYSTERECTOMY</th>
<th>CERVICAL PATHOLOGY IN HISTOLOGY SPECIMEN</th>
<th>RECOMMENDED FOLLOW UP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Benign gynaecological disease</td>
<td>No cervical pathology</td>
<td>No follow up</td>
</tr>
<tr>
<td>HSIL (CIN2/3) with completed Test of Cure*</td>
<td>Abnormal screening with histologically confirmed HSIL (CIN2/3)</td>
<td>HSIL (CIN2/3) ± associated benign gynaecological disease</td>
<td>Positive for cervical pathology LSIL or HSIL</td>
<td>Test of Cure</td>
</tr>
<tr>
<td>No cervical pathology</td>
<td>No known screening history</td>
<td>Benign gynaecological disease</td>
<td>Regardless of findings</td>
<td>Test of Cure</td>
</tr>
<tr>
<td>Annual co-testing indefinitely</td>
<td>HPV test*</td>
<td>No cervical pathology</td>
<td>No cervical pathology</td>
<td>Test of Cure</td>
</tr>
<tr>
<td>No cervical pathology</td>
<td>HPV test*</td>
<td>Unexpected positive cervical pathology LSIL or HSIL</td>
<td>Test of Cure</td>
<td>Test of Cure</td>
</tr>
</tbody>
</table>

Note:

If invasive cervical cancer reported in cervical pathology, patient to be referred to gynaecological oncologist for further management.

† not including total hysterectomy performed for AIS
CERVICAL SCREENING GUIDELINES

SCREENING AFTER TOTAL HYSTERECTOMY

Total hysterectomy

CONSENSUS-BASED RECOMMENDATION

REC13.1: Total hysterectomy for benign disease

Women with a normal cervical screening history, who have undergone hysterectomy for benign disease (e.g., menorrhagia, uterine fibroids or utero-vaginal prolapse), and have no cervical pathology at the time of hysterectomy, do not require further screening or follow up.

CONSENSUS-BASED RECOMMENDATION

REC13.2: Total hysterectomy after completed Test of Cure

Women who have had a total hysterectomy with no evidence of cervical pathology, have previously been successfully treated for histologically confirmed HSIL and have completed Test of Cure, do not require further follow-up. These women should be considered as having the same risk for vaginal neoplasia as the general population who have never had histologically confirmed HSIL and have a total hysterectomy.

If unexpected LSIL or HSIL is identified in the cervix at the time of hysterectomy, then these women require follow-up with an annual co-test on a specimen from the vaginal vault until they have a negative co-test on two consecutive occasions.

CONSENSUS-BASED RECOMMENDATION

REC13.3: Total hysterectomy after adenocarcinoma in situ (AIS)

Women who have had a total hysterectomy, have been treated for AIS, and are under surveillance, should have a co-test on a specimen from the vaginal vault at 12 months and annually thereafter, indefinitely.†

Women who have a total hysterectomy, as completion therapy or following incomplete excision of AIS at cold-knife cone biopsy or diathermy excision, should have a co-test on a specimen from the vaginal vault at 12 months and annually thereafter, indefinitely.

† Until sufficient data become available to support cessation of testing

CONSENSUS-BASED RECOMMENDATION

REC13.4: Total hysterectomy for treatment of high-grade CIN in the presence of benign gynaecological disease

Women who have had a total hysterectomy as definitive treatment for histologically confirmed HSIL in the presence of benign gynaecological disease, irrespective of cervical margins, should have a co-test on a specimen from the vaginal vault at 12 months after treatment and annually thereafter until the woman has tested negative by both tests on two consecutive occasions.

After two annual consecutive negative co-tests, the woman can be advised that no further testing is required.

CONSENSUS-BASED RECOMMENDATION

REC13.5: Total hysterectomy after histologically confirmed HSIL without Test of Cure

Women who have been treated for histologically confirmed HSIL, are under surveillance or have returned to routine screening without Test of Cure, and have had a total hysterectomy with no evidence of cervical pathology, should have a co-test on a specimen from the vaginal vault at 12 months and annually until the woman has tested negative on two consecutive occasions.

After two annual consecutive negative co-tests, the woman can be advised that no further testing is required.
CONSENSUS-BASED RECOMMENDATION*

REC13.6: Total hysterectomy and no screening history
Women who have had a total hysterectomy with no evidence of cervical pathology, and whose cervical screening history is not available, should have a HPV test on a specimen from the vaginal vault at 12 months and annually thereafter until they have a negative HPV test on two consecutive occasions.
After two annual consecutive negative HPV tests, women can be advised that no further testing is required.

PRACTICE POINT

REC13.7: Colposcopy referral for any positive co-test result following total hysterectomy
Women who have had a total hysterectomy and are under surveillance with co-testing, and have a positive oncogenic HPV (any type) test result and/or any cytological abnormality, should be referred for colposcopic assessment.

PRACTICE POINT

REC13.8: Vaginal bleeding following total hysterectomy
Women who have vaginal bleeding† following total hysterectomy should be assessed by their GP or gynaecologist, regardless of the results of any surveillance tests.
† Vaginal bleeding is quite common in the early weeks following hysterectomy and, where appropriate, should be investigated by the treating gynaecologist.

PRACTICE POINT

REC13.9: Total hysterectomy after genital tract cancer
Women who have been treated for cervical or endometrial cancer are at risk of recurrent cancer in the vaginal vault. These women should be under ongoing surveillance from a gynaecological oncologist. Therefore, they will be guided by their specialist regarding appropriate surveillance and this is outside the scope of these guidelines.

Subtotal hysterectomy

PRACTICE POINT

REC13.10: Subtotal hysterectomy
Women who have undergone subtotal hysterectomy (the cervix is not removed) should be invited to have 5-yearly HPV testing in accordance with the recommendation for the general population. Any detected abnormality should be managed according to these guidelines.

BENEFITS AND HARMSS

For women who have had a total hysterectomy, who have a prior history of histologically confirmed HSIL, there is evidence to support continued surveillance for a limited period of time. For women who have had a hysterectomy with a prior history of AIS there is currently no evidence to inform the decision to discontinue surveillance. The potential harms of surveillance are minimal, especially in relation to the enhanced safety conferred by continuing surveillance.

See Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed NCSP.
HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice
These recommendations are generally consistent with current clinical practice, apart from the addition of HPV testing, to enhance recommended surveillance.

Resourcing
No material changes to the costs are anticipated.

Barriers to implementation
Women may not understand the importance of follow-up after total hysterectomy, believing that they are now ‘cured’. The treating gynaecologist should be encouraged to provide appropriate information regarding the risk of recurrent disease in the vagina, the need for surveillance and should provide the general practitioner with a management plan outlining the recommended surveillance.

Discussion

UNRESOLVED ISSUES
In the future, it is possible that women who have had a total hysterectomy may be discharged after test of cure following only one negative co-test, or a single HPV-only test, but sufficient data to support such management will need to be accrued via the safety monitoring process for the NCSP.

FUTURE RESEARCH PRIORITIES
Currently there is insufficient evidence to determine the most appropriate follow-up for patients who have had AIS and had a total hysterectomy. Research to inform the method and duration of follow up of these women should be given priority.

References
SCREENING IN PREGNANCY

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
Dr Joanne Mountford – Co-author
Dr Lara Roeske – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Screening in pregnancy

BACKGROUND

Cervical screening during pregnancy is a special circumstance, as additional consideration needs to be given for the wellbeing of the foetus. The incidence of cervical cancer in pregnancy is low, with estimates in the literature ranging from 3.3 to 26 cases per 100,000 births. However, early-stage cervical cancer may be more frequently encountered by clinicians caring for women during their pregnancy due to higher age-specific incidence rates in the 30–39 year age group, compared with younger ages, and more women delaying pregnancy. Although most cases of cervical abnormalities are likely to be asymptomatic and identified through screening, it is important to consider non-obstetric causes when a pregnant woman reports vaginal bleeding (see Chapter 18. Investigation of abnormal vaginal bleeding).

Approximately five per cent of pregnant women will have abnormal cervical cytology. Routine antenatal care should include cervical screening when this is due or overdue. For some women, pregnancy may be the first opportunity for cervical screening and cervical cancer is more likely to be diagnosed in never screened or under-screened women.

The tool of choice for collection of a cervical screening specimen in pregnant women should be a broom type brush. The endocervical brush is not recommended.

Conservative management of high-grade squamous intraepithelial lesions (HSIL) is recommended during pregnancy. Colposcopy is performed to exclude the presence of invasive cervical cancer, to confirm the presence of pre-invasive disease and reassure the pregnant woman that it is safe to continue with her pregnancy. When HSIL is diagnosed during pregnancy, treatment can be delayed until after delivery because progression of cervical intraepithelial neoplasia (CIN) to invasive disease during pregnancy is rare, with a range of 0–3% of cases. Almost all cases are microinvasive and amenable to curative treatment.

Postpartum regression of CIN lesions is common. A meta-analysis of studies found that women treated for CIN during pregnancy were at an increased risk of preterm birth (< 37 weeks) and premature rupture of membranes, compared with women with untreated CIN who gave birth before treatment. However, when invasive disease is suspected or confirmed in pregnancy, expert management by a gynaecologic oncologist is required due to the increased risk of poor pregnancy outcomes.

EVIDENCE

General literature review evidence

A general literature search was conducted to identify recent studies reporting on the natural history of cervical dysplasia during pregnancy and its management.

The available evidence consists of only small studies, with somewhat diverse findings for the natural history of progression and regression of HSIL or histologically confirmed HSIL identified during pregnancy. Microinvasive or invasive disease was identified in a small number of cases, most of which were diagnosed post partum.

There is evidence to support the safety of colposcopy and biopsy during pregnancy. Biopsy of the cervix in pregnancy is associated with a small risk of excessive bleeding from the cervical biopsy site, but is considered otherwise safe.

The findings are summarised in the Technical report.
RECOMMENDATIONS

Flowchart 14.1. Management of a LBC prediction of HSIL in pregnancy

CONSENSUS-BASED RECOMMENDATION

REC14.1: Positive oncogenic HPV (not 16/18) test result with LBC negative or pLSIL/LSIL in pregnancy

Pregnant women who have a positive oncogenic HPV (not 16/18) test result with a LBC report of negative or prediction of pLSIL/LSIL should have a repeat HPV test in 12 months.

CONSENSUS-BASED RECOMMENDATION

REC14.2: Positive oncogenic HPV (not 16/18) test result with LBC pHSIL/HSIL or any glandular abnormality in pregnancy

Pregnant women who have a positive oncogenic HPV (not 16/18) test result with a LBC prediction of pHSIL/HSIL or any glandular abnormality should be referred for early† colposcopic assessment.

† When practical and not deferred until the postpartum period.

CONSENSUS-BASED RECOMMENDATION

REC14.3: Positive HPV (16/18) test result in pregnancy

Pregnant women who have a positive oncogenic HPV (16/18) test result should be referred for early† colposcopic assessment regardless of their LBC test result.

† When practical and not deferred until the postpartum period.
CONSENSUS-BASED RECOMMENDATION*

REC14.4: Referral of pregnant women with invasive disease
Pregnant women should be referred and seen within 2 weeks by a gynaecological oncologist/gynaecological cancer centre for multidisciplinary team review and management in the following situations:

- LBC prediction of invasive disease
- colposcopic impression of invasive or superficially invasive squamous cell carcinoma of the cervix
- histologically confirmed diagnosis of invasive or superficially invasive squamous cell carcinoma of the cervix.

CONSENSUS-BASED RECOMMENDATION*

REC14.5: Colposcopy during pregnancy
The aim of colposcopy in pregnant women is to exclude the presence of invasive cancer and to reassure them that their pregnancy will not be affected by the presence of an abnormal cervical screening test result.

PRACTICE POINT

REC14.6: Colposcopy during pregnancy
Colposcopy during pregnancy should be undertaken by a colposcopist experienced in assessing women during pregnancy.

CONSENSUS-BASED RECOMMENDATION*

REC14.7: Cervical biopsy in pregnancy is usually unnecessary
Biopsy of the cervix is usually unnecessary in pregnancy, unless invasive disease is suspected on colposcopy or reflex LBC predicts invasive disease.

CONSENSUS-BASED RECOMMENDATION*

REC14.8: Defer treatment until after pregnancy
Definitive treatment of a suspected high-grade lesion, except invasive cancer, may be safely deferred until after the pregnancy.

PRACTICE POINT

REC14.9: Follow-up assessment after pregnancy
If postpartum follow-up assessment (colposcopy and/or HPV test and reflex LBC if necessary) is required, it should be done no less than 6 weeks after delivery and preferably at 3 months. This interval is optimal to reduce the risk of reflex LBC interpretation difficulties or unsatisfactory reflex LBC.

The cervical sample (for HPV test and reflex LBC if necessary) could be collected at the time of postpartum check or at the time of the colposcopic assessment.
14. CERVICAL SCREENING GUIDELINES
SCREENING IN PREGNANCY

PRACTICE POINT

REC14.10: Vaginal oestrogen prior to postpartum colposcopy
For women who are breastfeeding, the use of intra-vaginal oestrogen cream or pessary† prior to colposcopy may improve visualisation of the cervix and the quality of any cervical sample for LBC.
† Daily for two weeks and cease approximately 3 days before colposcopy.

PRACTICE POINT

REC14.11: Cervical screening in pregnancy
Routine antenatal and postpartum care should include a review of the woman’s cervical screening history. Women who are due or overdue for screening should be screened.

PRACTICE POINT

REC14.12: Cervical screening in pregnancy
A woman can be safely screened at any time during pregnancy, provided that the correct sampling equipment is used. A cytobrush or combi-brush should not be inserted into the cervical canal because of the risk of associated bleeding, which may distress women.

PRACTICE POINT

REC14.13: Self-collection in pregnancy
Self-collection for HPV testing is not recommended in pregnancy.

BENEFITS AND HAZARDS
Biopsy is not recommended in pregnancy but may be required, especially when there is suspicion of invasive disease. There is evidence that it is safe to biopsy the cervix during pregnancy, although there may be a risk of excess bleeding.
However, the risk of an undiagnosed cervical cancer in pregnancy outweighs the risk of bleeding from a biopsy.
Deferring treatment of pre-invasive high grade lesions during pregnancy will prevent possible complications of pregnancy loss and excessive bleeding. There is a small risk of progression to invasive cervical cancer during pregnancy, although an Australian case series showed no cases of progression. Most commonly, this will be microinvasive disease, rather than a clinically apparent cancer.

See Chapter 5. Benefits, harms and cost-effectiveness of screening in the renewed NCSP.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice
The recommendations are consistent with current clinical practice. However changes to the cervix in pregnancy make colposcopic assessment more challenging. Although the squamocolumnar junction and the transformation zone (TZ) are more exposed during pregnancy, complete visualisation of all four quadrants of the cervix is often hindered by oedema, cyanosis, vaginal wall protrusion and thick mucus production. Although colposcopy is safe to perform during pregnancy, an experienced colposcopist should perform the examination owing to the difficulty in differentiating between changes occurring as a result of pregnancy and those due to cervical pathology. A lack of experience could potentially lead to an overestimation of the severity of dysplasia, a mistaken diagnosis of invasive disease and unnecessary investigation during pregnancy.

Resourcing
No additional costs are anticipated.

Barriers to implementation
None.
CERVICAL SCREENING GUIDELINES

SCREENING IN PREGNANCY

Figure 12.1.1. Cyto-broom: recommended for use in pregnant women to collect a cervical screening specimen

Image source: Victorian Cytology Services Limited.

Figure 12.1.2. Endocervical brush: not recommended for use

Image source: Victorian Cytology Services Limited.

References

9. Origioni M, Salvatore S, Perazzi F, Coppolillo P. Cancer in pregnancy: gaps, challenges and solutions. Cancer Cancer in pregnancy: gaps, challenges and solutions. Cancer C
SCREENING IN WOMEN WHO HAVE EXPERIENCED EARLY SEXUAL ACTIVITY OR HAVE BEEN VICTIMS OF SEXUAL ABUSE

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
A/Professor Deborah Bateson – Co-author
Dr Andrea Garrett – Co-author
Professor Ian Hammond – Co-author
Dr Lara Roeske – Co-author
Ms Lisa Whop – Co-author
Mr. C. David H. Wrede – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
CERVICAL SCREENING
GUIDELINES
SCREENING IN WOMEN WHO HAVE EXPERIENCED EARLY
SEXUAL ACTIVITY OR HAVE BEEN VICTIMS OF SEXUAL ABUSE

Screening in women who have experienced early sexual activity or have been victims of sexual abuse

BACKGROUND
Human papillomavirus (HPV) infection often occurs shortly after first sexual activity.[1] HPV infections are more likely to occur in adolescent women than in older women, as the process of squamous metaplasia of the transformation zone of the cervix is more active during adolescence and represents a vulnerability to the establishment of HPV infections.[2] There is also evidence that individuals who have been victims of sexual abuse as children have higher rates of anogenital HPV detection than individuals with no such history.[3]

Women who experience first sexual activity at an early age and are subsequently infected with oncogenic HPV may have a higher risk of carcinogenesis over time if these infections are persistent, since persistent infections are associated with an increased risk of cervical cancer.[4] Most HPV infections are transient and are cleared in adolescents and young women without the detection of cervical intraepithelial neoplasia (CIN) within 36 months.[5]

The incidence of cervical cancer in women younger than 25 years of age is very low. Since the introduction of the National Cervical Screening Program (NCSP), age-specific incidence rates in this group of women have remained relatively stable over the past two decades.[6] The introduction of the National HPV Vaccination Program, which offers the HPV vaccine to girls at age 12–13 years, provides an additional level of protection for young women. Furthermore, there is some evidence that vaccination of women after first sexual intercourse may prevent reinfection or reactivation of the disease with vaccine included HPV types.[7]

The prevalence of vaccine-included HPV types 16/18/6/11 is now very low in young women, and has reduced by 35% since 2005–2007 in unvaccinated women, as well as in vaccinated women.[8] HPV 16 is the dominant contributor to cervical cancer and precancer in young women; prior to HPV vaccination, HPV 16 was detected in 70% of CIN grade 3 (CIN3) in women aged 16–25 years.[9]

Since the introduction of the National HPV Vaccination Program, there has been a steady decline in the detection of high-grade abnormalities in women under 20 years of age[10] and a reduction in the risk of high-grade cervical abnormalities in women who completed the vaccine series at the ages of 12–26 and who had not started screening before the implementation of the vaccination program.[11]

Anogenital HPV infections are transmitted mainly by skin-to-skin or mucosa-to-mucosa contact. Penetrative sexual intercourse is not strictly necessary for transmission and HPV can be transferred to the cervix from original infection at the introitus. Therefore, genital skin-to-skin contact, vaginal sex, oral sex, and anal sex represent types of sexual activity that may facilitate the person-to-person transmission of anogenital types of HPV.

EVIDENCE
Systematic review evidence
No randomised or pseudorandomised controlled trials were found that evaluated the safety and effectiveness of alternative screening strategies in women with a history of early sexual intercourse or sexual abuse in comparison to other women.

General literature review evidence
In the absence of any direct evidence from the systematic review, a general review of the literature was performed to ascertain the effectiveness of cervical screening in:

- women who have had first sexual intercourse at the age of 14 years or younger
- women who had been sexually abused as children,
Sixteen studies were identified. No studies directly addressed the clinical question. However, one study provided indirect evidence based on the re-analysis of individual data from studies on cervical cancer risk conducted worldwide. In this study, the relative risk for invasive cervical carcinoma in women who first had intercourse at the age of 14 years or younger was similar to the risk in women who first had intercourse at 16–18 years of age. In Australia, the median age at first sexual intercourse has been estimated to be 16–17 years of age.

Although a number of studies were identified by the search, no other recent studies reported relevant outcome data by age of sexual debut. Studies found that regression of cervical abnormalities was common in young women and that CIN3+ was rare. There is a lack of evidence that women who have experienced early sexual intercourse will benefit from commencing cervical screening before age 25 years.

RECOMMENDATIONS

MSAC EVIDENCE-BASED RECOMMENDATION

REC15.1: Routine cervical screening is not recommended in young women

Routine cervical screening is not recommended in women under the age of 25 years.

CONSENSUS-BASED RECOMMENDATION

REC15.2: Early sexual activity and cervical screening in young women

For women who experienced first sexual activity at a young age (<14 years) and who had not received the HPV vaccine before sexual debut, a single HPV test between 20 and 24 years of age could be considered on an individual basis.

CONSENSUS-BASED RECOMMENDATION

REC15.3: Women with abnormal vaginal bleeding

Women at any age who have signs or symptoms suggestive of cervical cancer or its precursors, should have a co-test† and be referred for appropriate investigation to exclude genital tract malignancy.

† Co-testing (HPV and LBC) is recommended as the presence of blood has the potential to adversely affect the sensitivity of any of the available tests.

BENEFITS AND HARMs

The minimal benefits of cervical screening in young women should be weighed against the increased risk of harm that unnecessary excisional procedures could have for future obstetric outcomes (see Chapter 14, Screening in Pregnancy) and psychosocial well-being (see Chapter 19, Psychosocial care).

Positive oncogenic HPV test results and mild cytological abnormalities are frequently encountered in women younger than 25 years. However, high rates of regression of low and high-grade CIN lesions have been reported in the literature and the positive predictive value of cytology screening tests appears to be lower in this age group. Investigation and potential treatment of these lesions, that will most likely regress, may lead to unnecessary harms (psychosocial, obstetric and financial). It is considered that the harms outweigh the benefits for young women. See Chapter 5, Benefits, harms and cost-effectiveness of cervical screening in the renewed NCSP.
HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

A single cervical screening test may be performed before 25 years of age in women for whom there is concern about early sexual activity or sexual abuse prior to age 14 years. These are considered to be special circumstances and are not applicable to the general population of women under 25 years of age. A significant proportion of women experience their first sexual intercourse at age 14–16 years. It is far less common for women to have first intercourse at age 13 years and below, and this may be more often related to sexual abuse.[21] This data supports confining our recommendations to women who have experienced early sexual activity or been victims of sexual abuse prior to the age of 14 years. Recommendations regarding symptomatic women are consistent with current clinical practice.

Resourcing

This recommendation is considered unlikely to require significant resources provided that cervical screening test providers restrict the screening of women under 25 years of age to those in whom the sexual history confirms either early sexual activity or sexual abuse (prior to 14 years of age) and on a case-by-case basis.

Barriers to implementation

Young women may choose not to disclose their age of first sexual activity or that they have a history of sexual abuse. However, as there is a lack of evidence that women with early sexual activity will benefit from commencing cervical screening earlier than 25 years of age, this is unlikely to affect safety in regard to the development of cervical cancer in these young women.

Discussion

UNRESOLVED ISSUES

Uncertainty remains as to whether early sexual activity increases the risk of cervical cancer in young women as there is no currently available evidence to support an increased risk. The National HPV Vaccination Program is expected to reduce the number of at-risk women although the overall impact of vaccination will depend on how many young women were HPV-naive before being vaccinated. Substantial indications of the effect of the National HPV Vaccination Program have already been observed in women including a reduction in the risk of high-grade cervical abnormalities in women who completed the vaccine series at the ages of 12–26 and who had not started screening before the implementation of the vaccination program,[14] a decline in the detection of high-grade abnormalities in women under 25 years of age,[13] and a substantial decline in the prevalence of vaccine-included HPV types in women aged 18–24 years.[15] HPV vaccination is also expected to reduce the risk of high-grade abnormalities in unvaccinated women indirectly, via a reduction in the circulation of vaccine included HPV types within the population. A recent observational study reported a reduction in the prevalence of HPV 16/18/6/11 in unvaccinated young women in Australia since the implementation of HPV vaccination, suggesting herd immunity.[8]

Nevertheless, vaccination should not be withheld from women post sexual debut as there is some evidence of protection even in women who were exposed to HPV prior to being vaccinated,[7] in addition to protection against any vaccine included HPV types to which they have not been previously exposed to.

FUTURE RESEARCH PRIORITIES

Prospective cohort studies following women from the age at first sexual activity until the age of CIN3 diagnosis, with regular interval follow-up, are required to ascertain the importance of early first sexual activity in the development of cervical pre-cancer.

Effectiveness of post-exposure HPV vaccination of young women and correlation with type of HPV in those found to have a positive oncogenic HPV test result.
References

SCREENING IN IMMUNE-DEFICIENT WOMEN

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
A/Professor Selvan Pather – Co-author
Dr Lara Roeske – Co-author
Mr. C. David H. Wrede – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author

We acknowledge and thank Professor Claire Vajdic (Head, Cancer Epidemiology Research Unit, Centre for Big Data Research in Health, University of New South Wales) and Andrew Grulich (Head, HIV Epidemiology and Prevention Program, The Kirby Institute, University of New South Wales) for their contributions to this section.
Screening in immune-deficient women

BACKGROUND
This section refers to women with acquired immune deficiency because of viral infection (e.g. human immunodeficiency virus (HIV)) or treatment with immunosuppressant drugs to prevent transplant rejection or to control an autoimmune disease (e.g. rheumatoid arthritis), as well as inherited primary immunodeficiency disorders (e.g. common variable immunodeficiency). Research on immune deficiency and cervical cancer has mostly focused on women with HIV and renal transplant recipients.

Cervical prevalence of oncogenic human papillomavirus (HPV) in HIV-positive women without cytological abnormalities is higher than their counterparts from the general population. Shared behavioural risk factors for HIV and HPV potentially play some role in these observed differences. While HPV16 remains the most common type, in infected women with cytological abnormalities there appears to be a shift in the prevalence of HPV oncogenic types from HPV16 to other high risk types and a higher risk of multiple HPV infections with increasing severity of cervical disease; in a meta-analysis of 20 studies, HIV-positive women with a cytological prediction of high-grade squamous intraepithelial lesion (HSIL) were significantly more likely to have a positive oncogenic HPV (not 16/18) test result and to have multiple HPV infections, compared with HIV-negative women with HSIL. In renal transplant recipients, prevalence estimates of oncogenic HPV types vary, with some studies finding estimates similar to the general population and others reporting higher estimates. Shared behavioural risk factors for HIV and HPV potentially play some role in these observed differences.

HIV infection has been consistently associated with HPV infection and pre-cancerous cervical lesions, and a significantly higher rate of cervical cancer in women with HIV/acquired immune deficiency syndrome (AIDS) was reported in a meta-analysis of six population-based studies (incidence ratio: 5.8). High incidence rates of cervical cancer have been reported by some subsequent studies, although others have found incidence to be the same as in the general population. Antiretroviral therapy (ART) and highly active antiretroviral therapy (HAART) do not appear to have reduced cervical cancer incidence in women with HIV/AIDS and a systematic review by Cobucci (2015) found that the risk of invasive cervical cancer has increased since the introduction of HAART (RR=1.46, 95%CI: 1.09–1.94). In the past, ART/HAART was only prescribed to people with a low CD4 count, and this is likely to have influenced results of previous studies. Since 2015, however, HAART has been recommended for anyone living with HIV, irrespective of CD4 count.

In solid organ transplant recipients, the majority of population-based studies have reported a higher incidence of cervical cancer than in their immunocompetent counterparts (standardised incidence ratios between 2–3). In contrast, a large US cohort study, using linked data from national and local registries, found the same incidence in transplant recipients as in the general population. There is also some evidence of a higher incidence of cervical intraepithelial neoplasia (CIN) in organ transplant recipients, although more research in this area is needed.

Screening appears to play an important role in whether or not risk is increased compared to the general population, with studies in screened populations suggesting no difference in risk in contrast to other studies that have identified higher risks of cervical cancer.
EVIDENCE

The literature searches were performed to identify data for HIV-positive women and transplant recipients, because these groups were identified as being immune-deficient in the pre-renewal National Cervical Screening Program (NCSP) guidelines[24] and are the predominant focus of research activities.

Systematic review evidence

Two systematic reviews were performed to identify studies that evaluated the safety and effectiveness of screening HIV-positive women and organ transplant recipient women using a modified recommended screening strategy (starting at an age less than 25 years and/or screening at intervals less than 5 years and/or referring all women with a positive oncogenic HPV test result to colposcopy irrespective of reflex liquid based cytology (LBC) result), compared with the recommended screening strategy for the general population. The search strategies and inclusion and exclusion criteria used are described in detail in the Technical report.

No randomised or pseudo-randomised controlled trials were found that evaluated the safety and effectiveness of screening immune-deficient women using strategies other than those recommended for the general population, compared with screening strategies used for the general population.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed investigating cervical screening and the risk of progression among HIV-positive women and transplant recipients.

In the Women’s Interagency HIV Study, the risks of CIN2+ and CIN3+ were assessed among women with normal cervical cytology, according to HIV status and oncogenic HPV status at baseline. HPV status was ascertained from cervicovaginal lavage samples.[25][26]

- In women in whom oncogenic HPV was not detected, the 5-year cumulative risk of CIN2+ and CIN3+ was the same, regardless of HIV status and CD4 count, and was less than 1% in both HIV-negative women and HIV-positive women, including in each CD4 count stratum (< 350, 350–500, and >500).[26][25]

- In women with a positive oncogenic HPV test result, the 5-year cumulative risk for CIN2+ was 16% (95% CI:9–23%) in HIV-positive women versus 10% (95% CI:0–21%) in HIV-negative women.[29]

- In multivariate analyses, there was no clear gradient in increasing risk for CIN2+ or CIN3+ with decreasing CD4 counts.[26]

- Among HIV-positive women who were positive for HPV16, the 5-year cumulative risks for CIN2+ and CIN3+ were 29% (95%CI:6–46) and 10% (95%CI:0–23) respectively.[25][26]

Other studies have reported that clearance of oncogenic HPV types other than 16/18 appeared to differ in immune-deficient women, compared with other women, however clearance of HPV16 infections did not.[27][28][29] In HIV-positive women, progression from low-grade cytological abnormalities to a higher-grade abnormality (either cytological or histological) appears to increase and regression to negative cytology appears to decrease with lower CD4 counts.[30]

In regard to the performance of HPV testing (Hybrid Capture 2) for detecting high-grade CIN in women with HIV, sensitivity was reported to be somewhat greater in HIV-positive women (96.4% for CIN3; 99.2% for CIN2+) than in HIV-negative women (90.9% for CIN3; 85.5% for CIN2+), and the negative predictive value was high in both HIV-positive and HIV-negative women (99.8% and 99.5% respectively for less than CIN2). Specificity was lower in HIV-positive women. However, the positive predictive value of HPV testing in detecting CIN2 or CIN3 was equally as high in HIV-positive as in HIV-negative women.[31]

It has been hypothesised that the difference in incidence of cervical cancer in immune-deficient women observed between studies may be due to the extent to which the women included in the different studies have been screened. Low participation in cervical screening by HIV-positive women and transplant recipients has been reported in some studies.[33][34][35] The influence of screening on risk is also indirectly supported by findings from studies reporting that risk in immune-deficient women is much more elevated for non-cervical HPV-related cancers (e.g. anal, vaginal, vulval, for which effective screening is not available) than for cervical cancer, even though the HPV attributable fraction for these cancers is lower than for cervical cancer.[36][37]
A review of international guidelines was also performed. The review focused on guidelines for HPV-based screening for immune-deficient women, as these guidelines are the most relevant for the renewed NCSP.

Two recent guidelines now include recommendations for HPV-based screening, and both guidelines recommend a three-year interval for HIV-positive women:

- The World Health Organization (WHO 2013) recommends that sexually active HIV-positive women should be screened as soon as the woman has tested HIV positive and those who are HPV-negative to be rescreened within 3 years.[37]

- Recent US guidelines recommend 3-yearly co-testing with HPV and cytology for HIV-positive women aged 30 years or older.[38]

The evidence regarding screening and treatment to prevent cervical cancer in immune-deficient women is of lower quality than that in the general population, due to the absence of long-term randomised controlled trials comparing screening strategies in these women. Given that the evidence is unclear about the safety of lengthening the screening interval to 5 years for immune-deficient women, and that two international guidelines recommend a 3-year interval in the context of HPV testing in this population, it is considered safer to retain a 3-yearly interval in the renewed NCSP until further evidence about the negative predictive value of HPV testing in this population is better understood.

The US guidelines recommend 3-yearly co-testing[38] but the review of the evidence carried out in Australia for the Medical Services Advisory Committee (MSAC) suggests that co-testing offers little additional benefit, compared with HPV testing alone. This is in line with other international recommendations and, therefore, co-testing is not recommended in this population or the wider program, as oncogenic HPV testing alone offers very similar benefits to co-testing.[37] Therefore, the 3-year interval recommendation in this guideline is in accordance with WHO guidelines and supported by US guidelines for screening and treatment of precancerous lesions for cervical cancer prevention in HIV-positive women.

RECOMMENDATIONS

The following recommendations apply to the following groups:

- women with HIV
- solid organ transplant recipients.

These groups have been defined as sufficiently immune-deficient to warrant more frequent screening and a lower threshold for colposcopy referral than the general female population, based on current literature and pre-renewal NCSP guidelines.[24] Note that this list is not exhaustive and does not include all patients with auto-immune conditions.

Flowchart 16.1. Management of screen detected abnormalities in immune-deficient women

- **Immune-deficient**
 - Screening HPV test 3 yearly
 - HPV detected (any type)
 - Colposcopy
 - Reflex LBC result
 - Assess entire lower anogenital tract
 - Histologically confirmed abnormalities managed according to these guidelines
 - HSIL (CIN 2/3)
 - Excisional treatment recommended
 - Test of Cure** completed
 - Return to routine HPV testing every 3 years
 - No confirmed histological abnormality
 - Follow up based on HPV/LBC/colposcopy in accordance with these guidelines

Annual co-test (HPV/LBC)

Histologically confirmed abnormalities managed according to these guidelines

AIS

Type 3 excisional TZ

Return to routine HPV testing every 3 years

Follow up based on HPV/LBC/colposcopy in accordance with these guidelines

Notes:

- Co-test (HPV and LBC) test 12 months after treatment & annually thereafter until the woman has had negative co-test on 2 consecutive occasions, after which she returns to routine 3-yearly screening
- Until sufficient data become available to support return to 3-yearly screening
SCREENING IN IMMUNE-DEFICIENT WOMEN

Screening interval recommendations

CONSENSUS-BASED RECOMMENDATION

REC16.1: Immune-deficient women in whom oncogenic HPV is not detected
Immunodeficient women who have a HPV test in which oncogenic HPV types are not detected should be screened every 3 years with a HPV test.

Management of abnormalities

CONSENSUS-BASED RECOMMENDATION

REC16.2: Colposcopy referral: positive oncogenic HPV test result (any type) in immune-deficient women
Women who are immune-deficient and have a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment informed by the reflex LBC.

CONSENSUS-BASED RECOMMENDATION

REC16.3: Colposcopy assessment and treatment in immune-deficient women
Assessment and treatment of immune-deficient women with screen-detected abnormalities should be by an experienced colposcopist or in a tertiary centre.

CONSENSUS-BASED RECOMMENDATION

REC16.4: Colposcopy of whole lower genital tract in immune-deficient women
The entire lower anogenital tract should be assessed, as the same risk factors apply for cervical, vaginal, vulval, perianal and anal lesions.

CONSENSUS-BASED RECOMMENDATION

REC16.5: Treatment in immune-deficient women
When treatment of the cervix is considered necessary in immune-deficient women, it should be by excisional methods.

PRACTICE POINT

REC16.6: Histological abnormalities of the cervix in immune-deficient women
Women with histologically confirmed abnormalities should be managed according to the same guidelines as women who are not immune-deficient.

PRACTICE POINT

REC16.7: Test of Cure for treated immune-deficient women
Women who are immune-deficient and treated for HSIL (CIN2/3) should have follow-up with Test of Cure as recommended in these guidelines. Women who complete Test of Cure should return to routine 3-yearly screening with a HPV test.
Special recommendations

PRACTICE POINT

REC16.8: Screening before solid organ transplantation
Women aged between 25 and 74 years should have a review of cervical screening history when they are added to the organ transplant waiting list and while they remain on the waiting list, to confirm they are up to date with recommended screening for the general population. Women who are overdue for screening, or become due while on the waiting list, should be screened with a HPV test so that any abnormalities can be investigated or treated as necessary prior to transplantation and commencement of immunosuppressive therapy.

PRACTICE POINT

REC16.9: Screening women with a new diagnosis of HIV
Women aged between 25 and 74 years who have a new diagnosis of HIV should have a review of their cervical screening history to ensure they are up to date with screening in line with the recommended 3-yearly interval for this group.

PRACTICE POINT

REC16.10: Other groups that may require special consideration
The groups listed below could be considered for screening every 3 years with a HPV test in accordance with the recommendation for HIV-positive women and solid organ transplant recipients:
- women with congenital (primary) immune deficiency
- women who are being treated with immunosuppressant therapy for autoimmune disease (e.g. inflammatory bowel disease, systemic lupus erythematous, rheumatoid arthritis, neuromyelitis optica, sarcoidosis)
- allogenic bone marrow transplant recipients treated for graft versus host disease.

PRACTICE POINT

REC16.11: Regular screening for immune-deficient women
Women who are immune deficient should be educated regarding the increased risk from HPV infection and encouraged to attend for regular screening.

PRACTICE POINT

REC16.12: Young women with long term immune deficiency
For young women who are sexually active and who have been immune deficient for more than 5 years, a single HPV test between 20 and 24 years of age could be considered on an individual basis (regardless of HPV vaccination status).

PRACTICE POINT

REC16.13: Guidance for immune-deficient women and their healthcare professionals
It is important that immune-deficient women and their healthcare professionals are guided by a clinical immunology specialist when using these guidelines.

See also:
- Management of low-grade squamous abnormalities
- Management of high-grade squamous abnormalities
- Management of glandular abnormalities
CERVICAL SCREENING GUIDELINES

SCREENING IN IMMUNE-DEFICIENT WOMEN

BENEFITS AND HARMs

There is evidence of an increased risk of CIN in immune-deficient women, but evidence is also suggestive that screening plays an important role in reducing or removing excess risk of cervical cancer. The current recommendations will ensure the prompt treatment of any precancerous lesions before progression to cervical cancer. Diagnostic assessments and potential treatment required in these women, currently under increased surveillance for their underlying disease, may cause additional anxiety and distress.

However, it is generally considered that the benefits outweigh the harms for immune-deficient women.

See the Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed National Cervical Screening Program (NCSP).

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

Recommendations regarding the management of immune-deficient women are consistent with present clinical practice.

Resourcing

No additional costs are anticipated.

Barriers to implementation

Some immune-deficient women may choose not to attend for cervical screening as frequently as recommended. Less frequent screening has been reported in both women with HIV and organ transplant recipients.[33][34][35]

Discussion

There is some evidence to support increased progression of cervical abnormalities in HIV-positive women compared with HIV-negative women.[32] Although HAART has been in use for two decades, there is only limited evidence of an increased likelihood of lesion regression and a higher clearance rate of oncogenic HPV positive SIL in adherent users.[33][34][35] Overall, there is insufficient direct evidence to support a change from the screening recommendations in pre-renewal NCSP guidelines,[28] which recommended colposcopy referral for any screen-detected abnormality.

When CIN is diagnosed in HIV-positive women, excisional therapy is recommended. However, failure rates are high, necessitating frequent post-treatment surveillance. Massad et al.[61] reported that most lesions detected after therapy in HIV-positive women were low grade which may be indicative of new HPV infections that are less likely to progress.

The burden of HPV-related cancers can be expected to increase in HIV-positive women given successful prolongation of life with ART and potentially longer duration of HPV persistence.[38]

UNRESOLVED ISSUES

There is insufficient evidence available to determine the optimal cervical screening strategy in immune-deficient women. Current recommendations reflect a cautious approach until further data become available. The effect of ART on progression of cervical disease is still unclear.

These guidelines have not investigated the need for special consideration in other groups of women who may be immune deficient either due to a disease, immunosuppressive drugs or both. This group is heterogeneous due to by varying degrees of disease severity, duration, types and length of treatments.

FUTURE RESEARCH PRIORITIES

Long-term randomised controlled trials, comparing screening strategies in immune-deficient women, are needed to inform future guidelines. It is anticipated that the renewed NCSP and the National Cancer Screening Register will facilitate the collection of data on immune-deficient women to support future recommendations. Modelled analysis may help in determining whether routine 5-yearly screening could be suitable for this group of women.
References

16. CERVICAL SCREENING GUIDELINES

SCREENING IN IMMUNE-DEFICIENT WOMEN

References continued

38. Centers for Disease Control and Prevention (CDC); National Institutes of Health; HIV Medicine Association of the Infectious Diseases Society of America. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents: Recommendations from CDC, the National Institutes of Health, and the HIV Medicine Association of the Infectious Diseases Society of America. 2015;Online with regular updates; last update Dec 17 2015.

SCREENING IN DES-EXPOSED WOMEN

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Bruce Armstrong – Co-author
A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
Professor Gordon Wright – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Screening in DES-exposed women

BACKGROUND
Diethylstilbestrol (DES) is a synthetic oestrogen, transplacental carcinogen and an endocrine disrupting compound.[1] It was prescribed from the 1940s until the early 1970s, predominantly to pregnant women in the first trimester, to prevent miscarriages by stimulating the synthesis of oestrogen and progesterone in the placenta.[1] It has been estimated that 15,000 Australian women used the drug during pregnancy.[2] DES is no longer registered for human use in Australia.

The first study to provide conclusive evidence of an association between in utero exposure to DES and clear cell adenocarcinoma (CCA) was reported in 1970 by Herbst and Scully, who found vaginal CCA in seven women aged 15–22 years.[3] Subsequent studies have consistently confirmed this finding, and the most recent review of human carcinogens by the International Agency for Research on Cancer (2012) states that there is substantial evidence indicating that women exposed in utero to DES have a markedly increased risk of clear cell carcinoma of the vagina and cervix.[1]

Vaginal adenosis is a known precursor of CCA that affects between 34–88% of DES-exposed women and less than 4% of unexposed women.[1]

EVIDENCE

Systematic review evidence
A systematic review was conducted to identify studies that evaluated the safety and effectiveness of screening women who were exposed to DES in utero and their daughters, using screening strategies other than those recommended for the general population, compared with those recommended for the general population. The search strategy and inclusion and exclusion criteria used are described in detail in the Technical report. No relevant randomised controlled trials or paired diagnostic performance studies were found.

General literature review evidence
In the absence of any direct evidence from the systematic review, three separate general reviews of the literature were performed to ascertain:

1. whether clear cell carcinomas are HPV positive
2. the risks of cervical and vaginal squamous cell carcinomas overall or high-grade cervical intraepithelial neoplasia (CIN) or high-grade vaginal intraepithelial neoplasia (VAIN) in women exposed to DES in utero, compared with women who were not exposed to DES
3. the risks of cervical and vaginal carcinomas or dysplasia in daughters of women who were exposed to DES in utero, compared with daughters of women who were not exposed.

Clear cell carcinomas
Nineteen studies were identified that tested for the presence of HPV DNA in samples of clear cell carcinoma of the cervix or vagina. Overall, about a third of 158 samples of clear cell carcinoma of the cervix were found to be HPV positive. The findings are summarised in the Technical report.

Squamous cell carcinomas in women exposed in utero
A Dutch study reported no excess risk for combined cervical and vaginal squamous cell carcinoma in a cohort of over 12,000 women exposed to DES in utero (standard incidence ratio 0.64; 95% CI 0.31–1.17).[1] In this study, women were recruited in 1992 and were followed prospectively until 2008.

In another analysis, data was combined from three studies initiated in the 1970s with long-term follow-up on 4653 women exposed to DES and 1927 unexposed controls. The cumulative risk of CIN2/CIN2+ in women exposed to DES in utero was 6.9% versus 3.4% in women who were not exposed to DES (hazard ratio 2.28; 95% CI: 1.59–3.27).[1]

Squamous cell carcinomas in daughters of women exposed in utero
A recent study reported data, confirmed from medical notes, from 463 daughters of women exposed to DES in utero and 330 unexposed women. No significant increased risk of cervical dysplasia was found in the daughters:[6]

• relative risk (RR) of any cervical lesion 1.45 (95% CI: 0.69–3.05)
• RR of moderate/severe cervical lesions 0.93 (95% CI: 0.29–2.94).
RECOMMENDATIONS

CONSENSUS-BASED RECOMMENDATION

REC17.1: Screening in DES-exposed women

Women exposed to DES in utero should be offered an annual co-test and colposcopic examination of both the cervix and vagina indefinitely.

CONSENSUS-BASED RECOMMENDATION

REC17.2: Colposcopy referral for abnormalities in DES-exposed women

Women exposed to DES in utero who have a screen-detected abnormality should be managed by an experienced colposcopist.

PRACTICE POINT

REC17.3: Daughters of women exposed to DES

These women should be screened in accordance with the NCSP policy (5-yearly HPV testing). Evidence of an adverse effect on the daughters of women exposed to DES in utero has not been found. However, if these women have concerns, testing similar to that recommended for their DES-exposed mothers could be considered on an individual basis. Self-collection for HPV testing is not recommended.

BENEFITS AND HARMS

On the basis of the evidence summarised above, we have proposed that HPV testing be added to the previous recommendations for annual cytological testing as part of screening offered to women exposed to DES in utero. The addition of HPV testing is expected to increase the detection of CCA in DES-exposed women. It is important, however, that clinicians are aware that not all CCA are HPV positive and that co-testing with cytology is necessary for early detection.

There is very little evidence available on the risk of cervical cancer or CIN in the daughters of women exposed in utero to DES. Due to the lack of evidence, the possibility that the risk of cancer in the daughters of women exposed in utero to DES is different to the risk in the general female population cannot be excluded, but is considered unlikely. If requested, annual co-testing (HPV and LBC) can be offered by clinicians to these women to provide reassurance.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

These recommendations are consistent with present clinical practice.

Frequent follow-up of this cohort of women will enable the timely observation and early treatment of any DES-associated changes.

Resourcing

No material changes to costs are anticipated.

Barriers to implementation

There are no barriers to implementation.
Discussion

UNRESOLVED ISSUES
There remains uncertainty as to whether daughters of women who were exposed to DES in utero experience a higher risk of clear cell carcinoma of the vagina or of other cervical or vaginal neoplasms than women without this maternal history.

FUTURE RESEARCH PRIORITIES
Where it is possible to do so, efforts should be made to follow-up additional cohorts of daughters of women who were exposed to DES in utero to ascertain whether or not they have a greater risk of cervical or vaginal neoplasms than women in the same populations without this maternal history.

References
18.

INVESTIGATION OF ABNORMAL VAGINAL BLEEDING

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):
A/Professor Deborah Bateson – Co-author
A/Professor Alison Brand – Co-author
Professor Ian Hammond – Co-author
Dr Joanne Mountford – Co-author
Ms Lisa Whop – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Investigation of abnormal vaginal bleeding

BACKGROUND

Intermenstrual bleeding is defined as vaginal bleeding at any time other than during normal menstruation or following sexual intercourse. Postcoital bleeding is vaginal bleeding after sexual intercourse. Intermenstrual bleeding and postcoital bleeding are not diagnoses; they are symptoms that warrant further assessment.[1] Abnormal vaginal bleeding can be associated with genital tract malignancy and premalignant conditions, as well as other conditions such as polyps, adenomyosis, leiomyomas, coagulopathies, ovulatory disorders, endometrial disorders and iatrogenic causes.[2][3]

Current Australian clinical practice guidelines developed by the Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG) and by Cancer Australia recommend that cervical cancer should be excluded in all women with persistent abnormal vaginal bleeding. The aim of these guidelines is to assist healthcare professionals in the management of intermenstrual bleeding or postcoital bleeding, including testing and/or referral to a specialist gynaecologist.

While cancer is an uncommon cause of abnormal vaginal bleeding in women of any age, postcoital bleeding particularly warrants investigation because it may be a symptom of cervical cancer.[1] A systematic review estimated the overall point prevalence of postcoital bleeding in the community at 0.7–9%, based on data from eight studies conducted mainly in Europe.[6] The RANZCOG advises that a single episode of postcoital bleeding in a woman with a normal Pap smear and normal cervical appearance does not warrant immediate referral for colposcopy, but that colposcopic examination is mandatory for recurrent or persistent postcoital bleeding.[1]

Intermenstrual and other irregular bleeding patterns are common, particularly in women using hormonal contraception (combined hormonal contraceptive pill or vaginal ring, progestogen-only pill, progestogen-only injection, implant or intrauterine device), or hormonal treatment.[7] Australian guidelines developed during the pre-renewal National Cervical Screening Program (NCSP) era recommend that persistent intermenstrual bleeding should be investigated, as needed, including taking a Pap smear, requesting a pelvic ultrasound and referral for assessment by a gynaecologist.[8][9] It is understood that most vaginal bleeding actually originates in the uterine body or cervix.

The presence of blood has the potential to adversely affect the sensitivity of any of the available tests for human papillomavirus (HPV) and liquid-based cytology (LBC). For this reason co-testing is recommended for women with abnormal vaginal bleeding and follow-up should be based on presenting symptoms, clinical evaluation and the test results.

EVIDENCE

Systematic review evidence

A systematic review was performed to identify studies evaluating the safety and effectiveness of direct referral to colposcopy, compared with HPV testing and cytology, in women with postcoital bleeding, intermenstrual bleeding or heavy menstrual bleeding. No randomised or pseudorandomised controlled trials were found.

The search strategy and inclusion/exclusion criteria are described in detail in the Technical report.

General literature review evidence

In the absence of any direct evidence from the systematic review, a general review of the literature was performed to inform consensus-based recommendations for investigating abnormal vaginal bleeding, in particular postcoital bleeding and intermenstrual bleeding.

No relevant evidence-based clinical practice guidelines based on systematic reviews of evidence were identified. No studies were found that assessed the safety and effectiveness of direct referral to colposcopy, compared with HPV testing and cytology in women with abnormal uterine bleeding.

One systematic review,[6] two prospective cohort studies[6][8] and seven retrospective cohort studies[10][11][12][13][14][15][16] reported outcomes in women with postcoital bleeding, including cytology findings, rates of cervical intraepithelial neoplasia grades 2 and 3 (CIN2, CIN3), invasive cervical carcinoma, and other diagnoses. Outcomes were reported according to known pre-referral cytology status.
and age group, where available. No studies reported cervical abnormalities according to HPV status in women with postcoital bleeding.

However, the later study,[18] which reported outcomes in women screened from 1985–1990 and followed up to 1994, found that postcoital bleeding carried a 3-fold risk of invasive cervical carcinoma in women with normal referral cytology. The reduction in risk associated with postcoital bleeding was presumed to be due to changes in prevalence and incidence of cancer since screening had been introduced.[6] The same systematic review estimated rates of invasive cervical cancer among women with postcoital bleeding (with community populations) to be approximately one in 44,000 for those aged 20–24 years, one in 5600 for those aged 25–34 years, one in 2800 for those aged 35–44 years and one in 2400 for those aged 45–54 years.[6]

In retrospective cohort studies, reported rates of invasive cervical carcinoma diagnosed in women with postcoital bleeding and normal or no referral cytology ranged from nil to 3.6%.[12][13][10] One study reported rates of CIN3 of 2.3% among women with postcoital bleeding and normal cytology who attended colposcopy.[13] Among women with postcoital bleeding and abnormal referral cytology, rates of invasive cervical cancer ranged from nil to 5%.[12][11][14]

We did not identify published studies, and we are unaware of any ongoing studies, directly evaluating the use of HPV testing or co-testing (the combination of HPV testing and LBC) in the investigation of postcoital bleeding in women.

A summary of the literature considered can be found in the Technical report.

RECOMMENDATIONS

Flowchart 18.1. Investigation of women with abnormal vaginal bleeding

- **Women with abnormal vaginal bleeding**
 - Postcoital bleeding (PCB)
 - Co-test (HPV & LBC)
 - HPV not detected & negative LBC
 - Clinically normal cervix
 - No colposcopy required (advise to see healthcare professional if symptoms persist)
 - Clinically normal cervix
 - Recurrent or persistent PCB (any age)*
 - HPV detected (any type) &/or abnormal LBC result
 - Refer for gynaecological assessment (regardless of test result)*

- **Unexplained intermenstrual bleeding**

- **Post-menopausal bleeding**
 - Co-test (HPV & LBC)
 - HPV detected (any type) &/or abnormal LBC result
 - Refer for gynaecological assessment (regardless of test result)*

- **Consider sexual health history & perform appropriate tests**

* May include colposcopy
* If significant delay (3–6 months from the previous test) following original HPV/LBC test, a repeat LBC could be considered
CONSENSUS-BASED RECOMMENDATION

REC18.1: Women with abnormal vaginal bleeding
Women at any age who have signs or symptoms suggestive of cervical cancer should have a co-test, and referral for appropriate investigation to exclude genital tract malignancy should be considered.

CONSENSUS-BASED RECOMMENDATION

REC18.2: Abnormal vaginal bleeding and testing for HPV and LBC
When women present with abnormal vaginal bleeding, appropriate investigations, which may include a cervical sample for a co-test,† should be performed and not delayed due to the presence of blood.

† The woman’s recent cervical screening history should also be considered.

CONSENSUS-BASED RECOMMENDATION

REC18.3: Postcoital bleeding in pre-menopausal women
Pre-menopausal women who have a single episode of postcoital bleeding and a clinically normal cervix do not need to be referred for colposcopy if oncogenic HPV is not detected and LBC is negative.

If postcoital bleeding recurs or persists despite a negative co-test women should be referred to a gynaecologist for appropriate assessment, including colposcopy, to exclude genital tract malignancy.

PRACTICE POINT

REC18.4: Postcoital bleeding and sexually transmitted infections
Sexually transmitted infections, including Chlamydia infection, should be considered and, when appropriate, excluded in all women presenting with postcoital bleeding. It is necessary to obtain a sexual health history and perform appropriate tests and investigations.

CONSENSUS-BASED RECOMMENDATION*

REC18.5: Symptomatic women with LBC prediction of cervical cancer
Women with symptoms and a LBC prediction of invasive cervical cancer should be referred to a gynaecological oncologist or gynaecological cancer centre for assessment.

CONSENSUS-BASED RECOMMENDATION

REC18.6: Women with intermenstrual bleeding may require specialist referral
Women with persistent and/or unexplained intermenstrual bleeding require appropriate investigation and should be referred for specialist gynaecological assessment, regardless of any test results.

CONSENSUS-BASED RECOMMENDATION

REC18.7: Postmenopausal women with vaginal bleeding require specialist referral
Postmenopausal women with any vaginal bleeding, including postcoital bleeding, should be referred for a specialist gynaecological assessment, to exclude genital tract malignancy.
18.

INVESTIGATION OF ABNORMAL VAGINAL BLEEDING

BENEFITS AND HARMs

While cancer is an uncommon cause of abnormal vaginal bleeding in women of any age, postcoital bleeding in particular warrants investigation because it may be a symptom of cervical cancer. For premenopausal women, with a single episode of postcoital bleeding, these recommendations will limit over-investigation, especially referral for colposcopy.

Overall, these recommendations are conservative, since the majority of women who are investigated will not be found to have serious disease. The reassurance provided by confirmation of disease-free status should be considered a benefit. Given the small but serious risk of underlying invasive cancer, these recommendations are considered to represent the best balance of benefits and harms.

HEALTH SYSTEM IMPLICATIONS OF THESE RECOMMENDATIONS

Clinical practice

Some healthcare professionals are reluctant to perform a cervical examination during bleeding. Therefore, implementation of the recommendation to take a sample for an HPV test and LBC despite the presence of blood may require education for healthcare professionals.

Resourcing

The use of co-testing is recommended as part of the initial investigation of women presenting with abnormal vaginal bleeding. This may have some resourcing implications in regards to costs and laboratory work load. It is not anticipated that this will be of great significance as the suggested management is otherwise unchanged from the previous guidelines.

Barriers to implementation

Healthcare professionals may remain concerned by the presence of postcoital bleeding, despite the reassurance of negative findings on co-testing, and may continue to refer women with only one episode of postcoital bleeding and a clinically normal cervix. Therefore, the education of healthcare professionals is of paramount importance to successful implementation of this recommendation.

Discussion

UNRESOLVED ISSUES

No unresolved issues have been identified.

FUTURE RESEARCH PRIORITIES

Future research could be carried out using routinely collected data to determine the most appropriate approach to managing younger women with symptoms.
INVESTIGATION OF ABNORMAL VAGINAL BLEEDING

References

19.

PSYCHOSOCIAL CARE

National Cervical Screening Program: Guidelines for
the management of screen-detected abnormalities,
screening in specific populations and investigation
of abnormal vaginal bleeding

Author(s):
Kim Hobbs – Author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Psychosocial care

ANXIETY AND DISTRESS
It is well documented that the finding of an abnormality on cervical screening has the potential to cause anxiety and distress. The degree and duration of psychological distress experienced by women with abnormal cervical screening depends on their understanding of the meaning of the results. As women are usually asymptomatic when a cervical abnormality is detected on routine screening, they may feel particularly vulnerable and distressed. Younger women and those who have never had children are at increased risk of high levels of anxiety.

Women's concerns may be centred around several themes:
- perceived threat to life, frequently with an assumption that there will be inevitable progression to invasive cancer
- worry about future fertility
- concern about risk of transmission to an intimate partner
- concerns about disclosing human papillomavirus (HPV) status to an intimate partner
- guilt, shame and self-blame associated with past sexual behaviour
- anger and mistrust of intimate partners; suspicion about infidelity.

As the trend in cervical screening shifts towards HPV testing, there is an emerging literature on the specific psychosocial and psychosexual issues associated with the psychological impact of positive HPV results and women's understanding of the implications of this result.

Confirmation of a positive HPV result may carry with it an additional burden of psychological distress due to the direct association with exposure to a sexually transmitted infection. Anxiety, fears and confusion surrounding the uncertainty of the meaning of cervical patholgy are compounded by issues of stigma and poor understanding about exposure to HPV. Psychosexual and psychosexual consequences may be significant and persistent, with the potential to result in clinical depression or an anxiety disorder requiring psychological interventions and treatment.

With increasing knowledge and understanding across the community that exposure to HPV infection is a pre-requisite for the development of cervical cancer, the general public understands the causal link between sexual behaviour and cancer more clearly than the implication of a cytological prediction of an intraepithelial lesion after a screening test.

Women who have not received vaccination, even though it was available to them, may feel distressed that they have failed to adequately protect themselves from infection. Those who have received the full course of HPV immunisation may feel distressed that the vaccine has ‘failed’.

Anger about exposure to HPV may lead to suspicion about the fidelity of the intimate partner and have a negative effect on intimate relationships. Additionally, women may have fears about transmitting the virus to current or future sexual partners. Psychosexual function may be impaired with decreased libido and lower frequency of intercourse.

MANAGEMENT OF DISTRESS
Information needs to be delivered in a sensitive manner and should be tailored to individual patient characteristics: age, education level, health literacy, parity, cultural/religious beliefs, mental health concerns and language proficiency.

- Information should be delivered compassionately, non-judgementally and in plain language (not medical jargon).
- Provision of printed information resources should supplement verbal communication. If possible, pamphlets, fact sheets or booklets should be available in community language translations for culturally and linguistically diverse populations.

Information provided to women could:
- explain the natural history of HPV infection
- normalise the incidence of HPV infection as a commonly acquired community infection
- reinforce that HPV infections are usually transient and do not progress to invasive cancer
- reinforce the benefits of having identified the infection through screening, enabling monitoring and intervention as appropriate to prevent cancer by treating pre-cursor lesions
- convey the message that, although HPV infection is relatively common, cervical cancer is uncommon in screened populations
- address concerns about transmitting the virus to intimate partners and discuss safe sex practices
- provide reassurance to reduce the stigma associated with HPV infection, then directing the conversation towards addressing the necessary next steps in evaluation and investigation
- explain the colposcopic procedure and possible outcomes.

Healthcare providers should be mindful that the emotional distress associated with receiving information about a positive HPV result may temporarily impair a woman's capacity to process and understand the result. Prior to the end of the consultation, health-care providers should reiterate the information and the next steps to be taken, checking that the woman has clearly understood the information.
Providing adequate information in a supportive environment, offering opportunities to ask questions and seek clarification, and ensuring a plan for communicating the next steps or investigations will usually be sufficient to allay the distress of most women. For those who demonstrate persistent elevated anxiety and distress, referral to other services for counselling may be helpful. Available services vary according to location, but may include women’s health services, GPs (who can initiate a mental health care plan), or counselling services within the local health facility.

Effective counselling strategies may be beneficial in alleviating distress for most women.\[23\]\[27\]\[28\]\[30\]

Counselling techniques and interventions with evidence of effectiveness may include:\[31\]

- psycho-education
- brief emotional support
- supportive-expressive therapy
- cognitive behavioural therapy (CBT)
- problem-solving approaches
- relaxation, meditation or mindfulness skills.

Ideally, counselling should be offered as a face-to-face (where possible) discussion, rather than by phone or letter. Formal referral to a suitably qualified counsellor (such as a clinical psychologist, social worker, sexual health counsellor or women’s health counsellor) should be considered for women who experience persistent emotional distress. Australian guidelines for screening, assessment and management of anxiety and depression in adult cancer patients provide a useful resource.\[31\]

WOMEN WITH SPECIAL NEEDS

Some women with pre-existing psychosocial comorbidities may require referral to specialist services for expert assessment and intervention. Such women may be underscreened and therefore at higher risk of HPV infection.\[32\]\[33\]

Factors to consider as special circumstances include:

- a history of trauma (including torture) – women may experience “triggering” of trauma responses when informed about a positive HPV test. They should be offered immediate mental health assessment and counselling.\[33\]\[34\]
- known prior sexual abuse (childhood or adult)\[35\]\[36\]
- current or past history of intimate partner violence\[37\]\[38\]
- disabilities (physical and intellectual)\[39\]
- history of substance misuse
- significant mental health history
- a history of female genital mutilation and/or surgical revision procedures.

Women from culturally and linguistically diverse backgrounds need to be given information in their first language, via health care interpreters or printed information resources. This is especially important for women from countries where there is no population-based cervical screening.

Women without stable accommodation and those who are socially marginalised may be non-compliant with necessary investigations following a positive oncogenic HPV test result. They may be difficult to locate or lost to follow up, frequently only re-emerging when symptomatic.\[42\]

For some women the first disclosure of sexual abuse may occur at the time of first speculum examination or in the context of receiving a positive HPV test result. Clinicians need to be aware of, and consider referral to, specialist state-based sexual assault counselling services for women with an identified background of sexual abuse.

For all women with additional psychosocial risk factors health professionals have a duty of care to be aware of the range of specialist treatment services within their jurisdictions, and to refer appropriately following consultation and consent from the woman.

EDUCATION AND INFORMATION

It is important to educate women about the need for cervical screening and to differentiate HPV testing from other sexually transmitted infection testing. For vulnerable women who may not be well connected to mainstream health services, attendance for cervical screening affords health professionals an additional opportunity to provide education about screening for other sexually transmitted infections and safe sex practices such as condom use, pregnancy counselling and emergency contraception.\[1\]\[4\]\[5\]\[10\]

Association of cervical screening with HPV testing may deter some women from participating in screening programs.\[10\]

Attitudes and behaviours may include:

- perceptions by women that they are not at risk of HPV infection due to their personal behaviours.
- deeming HPV screening as unnecessary if they have received HPV vaccination.\[44\]
- avoidance due to fear of a positive result and what that may mean for intimate relationships.

Women with psychosocial risk factors may be difficult to engage in screening programs.\[55\]\[56\]\[57\]\[58\]. For those who do undertake screening, elevated psychological distress following a positive HPV result may impede their ability to continue with recommended investigations and to adhere to cervical screening guideline recommendations.\[54\]

Education is required to counter the potential for distress that may be experienced by some women as the changes to cervical screening policy are implemented. The change to primary HPV testing, the later recommended age to commence screening and the longer screening interval may be perceived by some women as a cost-driven reduction in surveillance, thus exposing them to an increased risk of developing invasive cancer.
CERVICAL SCREENING GUIDELINES

PSYCHOSOCIAL CARE

Effective education and information may assist women in decision-making, at the same time assisting their psychological adjustment, treatment compliance and satisfaction with care.

PSYCHOSOCIAL RESOURCES

Although the overwhelming majority of women who have a positive HPV test will not go on to develop cervical cancer, psychosocial guidelines that have been developed for addressing issues of anxiety and psychological distress in the context of cancer are useful for all health professionals.

The most comprehensive evidence-based guideline on psychosocial care is the 2003 Clinical practice guidelines for the psychosocial care of adults with cancer published by the National Breast Cancer Centre (now Cancer Australia).

This resource has been supplemented by:

Psychosocial Care Referral Checklist (2008)

Clinical Guidance for Responding to Suffering in Adults with Cancer (2014)

All of these resources can be accessed from Cancer Australia

For information and resources about sexual health see Health Direct Australia or refer to specialist sexual health services in your local jurisdiction.

References

References continued

TRANSITION TO THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Karen Canfell – Co-author
Dr Lara Roeske – Co-author
A/Professor Marion Saville – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Transition to the renewed National Cervical Screening Program

BACKGROUND
At the transition of the renewed National Cervical Screening Program (NCSP) there will be women who have had a previous screen detected abnormality and who are currently undergoing investigation, treatment or follow-up for:

- abnormal Pap test result
- histologically confirmed high-grade squamous intraepithelial lesion (HSIL) (cervical intraepithelial neoplasia grades 2 to 3 (CIN2/3))
- histologically confirmed adenocarcinoma in situ (AIS).

This chapter describes how these women should be transitioned to the renewed program after 1 December 2017, when the Pap test will be replaced by primary screening using human papillomavirus (HPV) testing, with reflex liquid-based cytology (LBC) for women with a positive oncogenic HPV (any type) test result.

Women who have participated in the pre-renewal NCSP and have not had any previous abnormality, or who have returned to routine screening after a Test of Cure, will be transitioned in accordance with NCSP transition policy. See www.cancerscreening.gov.au.

RECOMMENDATIONS

Flowchart 20.1. Transition to the renewed National Cervical Screening Program

Women of any age with Existing Abnormalities* (cytology or histopathology)

Prior December 2017

Pap test result
pLSIL/LSIL

After December 2017

HPV test at next scheduled appointment

HPV detected (any type)

Start or continue with Test of Cure**

Treated for histologically confirmed HSIL (CIN2 or CIN3)

Annual co-test (HPV & LBC) indefinitely#

Treated for histologically confirmed AIS

HPV not detected

Reflex LBC

Routine 5-yearly screening with HPV test for 25–74 year olds

Refer for colposcopic assessment

* Prior to December 2017
** A woman who has been treated for HSIL (CIN2/3) should have a co-test (HPV and LBC) performed at 12 months after treatment, and annually thereafter, until both tests are negative on two consecutive occasions, when she can return to routine 5-yearly screening.
Until sufficient data become available that may support a policy decision that cessation of testing is appropriate.
PRACTICE POINT

REC20.1: HPV test replaces the Pap test
All Pap tests are replaced by HPV testing.
Conventional Pap tests are no longer used.
Reflex LBC will be performed on any sample with a positive oncogenic HPV (any type) test result.
Co-testing (HPV and LBC) to be performed only as recommended in these guidelines, in the follow-up of screen-detected abnormalities or the investigation of abnormal vaginal bleeding.

PRACTICE POINT

REC20.2: HPV testing for women in follow-up after pLSIL/LSIL
Women who are in follow-up for pLSIL/LSIL cytology in the previous program (pre-renewal NCSP) should have a HPV test at their next scheduled follow-up appointment.
• Women with a positive oncogenic HPV (any type) test result should be referred for colposcopic assessment informed by reflex LBC.
• If oncogenic HPV is not detected, the woman can return to 5-yearly screening.

PRACTICE POINT

REC20.3: Colposcopic management of a prior screen-detected abnormality should continue
Women who have been referred for colposcopic assessment following any cytological abnormality in the pre-renewal NCSP should continue their colposcopic management according to these guidelines.

PRACTICE POINT

REC20.4: Prior treatment and Test of Cure
Women who have been treated for HSIL (CIN2/3) in the pre-renewal NCSP and are undergoing, or have not yet commenced Test of Cure, should start or continue Test of Cure in accordance with these guidelines.
Women should have an annual co-test (HPV and LBC) performed at 12 months after treatment, and annually thereafter, until both tests are negative on two consecutive occasions, when they can return to routine 5-yearly screening.

PRACTICE POINT

REC20.5: Prior treatment for AIS
Women who have been treated for AIS in the pre-renewal NCSP, and are undergoing or have not yet commenced surveillance, should have annual co-testing (HPV and LBC) indefinitely.†
† Until sufficient data become available that may support a policy decision that cessation of testing is appropriate.

See also:
• Chapter 10. Management of histologically confirmed high-grade squamous abnormalities
• Chapter 11. Management of glandular abnormalities
MODELLED EVALUATION OF THE PREDICTED BENEFITS, HARMs AND COST-EFFECTIVENESS OF THE RENEWED NATIONAL CERVICAL SCREENING PROGRAM (NCSP) IN CONJUNCTION WITH THESE GUIDELINE RECOMMENDATIONS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Karen Canfell – Co-author
Ms Michaela Hall – Co-author
Jie Bin Lew – Co-author
A/Professor Marion Saville – Co-author
Dr Kate Simms – Co-author
Megan Smith – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Introduction

A modelling approach was used to predict the impact of the renewed National Cervical Screening Program (NCSP), when implemented in conjunction of these guidelines, on benefits, harms, cost-effectiveness and resource utilisation. The estimates presented here are an update of predictions that underpinned the Medical Services Advisory committee (MSAC) recommendations.[1]

The findings are summarised in Chapter 5. Benefits, harms and cost-effectiveness of cervical screening in the renewed NCSP. This appendix briefly describes the modelling methods and details the updates included since the model platform was used for the MSAC evaluation. Updates affecting the overall effectiveness and costs associated with the renewed NCSP include changes in:

- guidelines for the management of women post colposcopy
- assumptions about compliance with colposcopy
- end age for screening.

METHODS

Model platform

We used the same model platform that was used for the MSAC evaluation. This platform has been used for a number of human papillomavirus (HPV) vaccination evaluations as well as screening technology, screening interval and screening management evaluations performed on behalf of national cervical screening programs in Australia, New Zealand and England. A schematic of the model is shown in **Figure A.1**. The model consists of several elements:

1. a dynamic model of sexual behaviour, HPV transmission and vaccination in females and males based on vaccination uptake rates reported by the National HPV Vaccination Program Register
2. a multi-HPV-type model of the natural history of HPV infection, progression, regression, the development of cervical intraepithelial neoplasia (CIN) and invasive cervical cancer
3. a model of cervical screening, diagnosis and treatment of CIN
4. a multiple-cohort implementation which separately models HPV exposure, CIN development, screening, and all downstream processes, for each age cohort of females
5. a population component that applies demographic data to the outputs to estimate cross-sectional results.

A more detailed description of the model, including data sources, model validation and calibration targets and previous applications of the model, can be found in MSAC’s NSCP renewal executive summary report.[1]
This flow diagram represents the natural history assumptions specific to a single HPV type. If multiple HPV infections exist, each will have the same flow dynamics, but the rates of progression and regression occur independently for each HPV type.
SCREENING COMPLIANCE ASSUMPTIONS

When modelling the pre-renewed NCSP, we incorporated data on age-specific screening initiation and compliance with screening and management recommendations in Australian women, informed by an analysis of data obtained from Victoria Cervical Cytology Registry (VCCR). When modelling the renewed NCSP, assumptions were based on the introduction of a call-and-recall system, with women sent invitations at age 25 years. We assumed that the number of women who attend their first screening test at age 25 years (the new initiation age) will be at least equivalent to the number who, under the pre-renewed NCSP, had their first screening test before, or at, the age of 25. For the purposes of this modelled evaluation, we assumed that no screening occurs before the age of 25 years under the renewed NCSP. Compliance with re-attendance for women in routine screening under the renewed NCSP was evaluated assuming implementation of the call-and-recall screening organisation system. The behaviour of women under a call-and-recall system was informed by data from England, where such a system has been implemented.

While the proportion of women who attend before or at the recommended screening interval (5 years under the renewed NCSP) is informed by the screening pattern observed in England, we assume that the coverage at 7 years is equivalent to that currently observed under the pre-renewed NCSP (i.e. that changing the recommended screening interval, by itself, will not change behaviour in very underscreened women). The modelled probability of re-attending, according to the time since last screening test, is shown in Figure A.2. We assumed that, for a given recall timeframe, the probability of attending a follow-up test in the renewed NCSP is equivalent to that currently observed under the pre-renewed NCSP.

As part of the MSAC evaluation, we previously explored a range of screening attendance assumptions, including slower screening uptake rates and a less ‘efficient’ call-recall system (in which there was a higher rate of early re-attendance and a lower rate of on-time attendance). Details of the impact of these screening assumptions can be found in MSAC’s NSCP renewal executive summary report.[1]

Figure A.2. Probability of re-attendance for women in routine screening

<table>
<thead>
<tr>
<th>TIME SINCE LAST SCREEN (YEARS)</th>
<th>PROBABILITY OF RE-ATTENDANCE BY TIME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
</tr>
</tbody>
</table>

PRE-RENEWED NCSP

RENEWED NCSP

CHANGES FROM THE MODEL USED FOR THE MSAC EVALUATION TO REFLECT THESE DRAFT GUIDELINES

Updates to the management of women post-colposcopy

We have incorporated into the model the new recommendations in these guidelines for post-colposcopy management. These include recommendations for women who were referred with a positive oncogenic HPV (16/18) test result, or women under follow-up with a positive oncogenic HPV (any type) test result, with each of the following colposcopy results (see Colposcopy terminology in Chapter 7, Colposcopy):

i) normal transformation zone (TZ) (negative colposcopy)

ii) abnormal TZ and histologically confirmed CIN2 or lesser-grade lesion

iii) type 3 TZ.
We have also incorporated new recommendations, according to these guidelines, for women referred to colposcopy who subsequently received pre-cancer treatment.

Table A.1 summarises updated post-colposcopy management for women referred with a positive oncogenic HPV (any type) test result and a liquid-based cytology (LBC) report of negative, possible low-grade squamous intraepithelial lesion (pLSIL) or low-grade squamous intraepithelial lesion (LSIL). Table A.2 shows updated post-colposcopy management for women who have an LBC prediction of possible high-grade squamous intraepithelial lesion (pHSIL) or high-grade squamous intraepithelial lesion (HSIL). These updates have been incorporated into the model.

Table A.1. Changes in post-colposcopy management for women with an LBC report of negative, pLSIL or LSIL, based on the renewed NCSP recommendations

<table>
<thead>
<tr>
<th>MSAC model assumptions*</th>
<th>Normal TZ</th>
<th>Type 3 TZ</th>
<th>Colposcopy abnormal and biopsy < CIN2</th>
<th>Treated for CIN2+ and under test-of-cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-testing at 12 and 24 months</td>
</tr>
<tr>
<td>Referral to colposcopy if any positive† at 12 months or 24 months</td>
<td>Referral to colposcopy if any positive† at 12 or 24 months</td>
<td>Referral to colposcopy if pHSIL+ or if both oncogenic HPV +ve (any type) and pLSIL+</td>
<td>Referral to colposcopy if oncogenic HPV (any type) +ve and LBC negative, or oncogenic HPV not detected and cytology pLSIL/LSIL</td>
<td>Colposcopy if LBC pH5IL+</td>
</tr>
<tr>
<td>HPV testing at 12 months</td>
<td>HPV testing at 12 and 24 months</td>
<td>HPV testing at 12 months</td>
<td>HPV testing at 12 months</td>
<td>Co-testing at 12 and 24 months</td>
</tr>
<tr>
<td>Referral to colposcopy if oncogenic HPV (16/18) +ve, or oncogenic HPV (non 16/18) +ve with reflex LBC pHSIL+</td>
<td>Referral to colposcopy if oncogenic HPV +ve (any type) at either visit§</td>
<td>Referral to colposcopy if oncogenic HPV not detected at 12 months and 24 months</td>
<td>Referral to colposcopy if oncogenic HPV (16/18) +ve, or oncogenic HPV (non 16/18) +ve with reflex LBC pH5IL+</td>
<td>Colposcopy if cytology pH5IL+ or oncogenic HPV (16/18) +ve (irrespective of LBC)</td>
</tr>
<tr>
<td>Discharge to routine screening if oncogenic HPV not detected</td>
<td>Return to routine screening if oncogenic HPV not detected at 12 months and 24 months</td>
<td>Discharge to routine screening if oncogenic HPV not detected</td>
<td>Discharge to routine screening if oncogenic HPV not detected</td>
<td>Otherwise, continue annual co-testing until 2 consecutive double negatives</td>
</tr>
</tbody>
</table>

TZ: transformation zone
Co-testing: HPV test and LBC
pHSIL+: possible HSIL or higher-grade lesion
pLSIL+: possible LSIL or higher-grade lesion
+ve: positive test result
* Model assumptions used for the MSAC evaluation (for the base case MSAC evaluation)
† Model assumptions reflecting the updated recommendations in these guidelines
‡ Oncogenic HPV (any type) detected or any abnormality on LBC
§ In the model, we assumed that women attending their visit at 24 months would be referred to colposcopy if they have a positive oncogenic HPV (16/18) test result, but not for a positive oncogenic HPV (not 16/18) test result.
Table A.2. Changes in post-colposcopy management for women with an LBC report of pHSIL or HSIL, based on the renewed NCSP

<table>
<thead>
<tr>
<th></th>
<th>Normal TZ</th>
<th>Type 3 TZ</th>
<th>Colposcopy abnormal and biopsy < CIN2</th>
<th>Treated for CIN2+ and under test-of-cure</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSAC model assumptions</td>
<td>Return for a LBC and colposcopic assessment at 6 and 12 months</td>
<td>Cold-knife cone biopsy is recommended. However, women who are concerned about fertility(^{†}) can have a repeat colposcopy in 4 months. If the TZ is still not visible, diagnostic excision is recommended</td>
<td>Co-testing at 12 and 24 months</td>
<td>Co-testing at 12 and 24 months</td>
</tr>
</tbody>
</table>

* Model assumptions used for the MSAC evaluation (for the base case MSAC evaluation)

** Model assumptions reflecting the updated recommendations in these guidelines

Based on Australian fertility rates for 2011, we have estimated the probability that a woman would have no further births from the age of 35 on as 64%. By age 40, this has increased to 92% and by age 45 it is over 99%. We therefore assume the following for the purposes of this modelled evaluation:

(i) All women aged < 35 years will choose to defer excisional biopsy

(ii) 95% of women aged 35–39 will choose to defer excisional biopsy

(iii) 8% of women aged 40–44 years will choose to defer excisional biopsy

(iv) No women aged 45+ will choose to defer excisional biopsy.

§ We assume all women will undergo diagnostic excision of the transformation zone at this point.

We assume that:

(i) women have a co-test (HPV and LBC), along with a colposcopy, at both visits

(ii) a woman undergoes diagnostic excision of the transformation zone if oncogenic HPV (any type) is detected, or oncogenic HPV is not detected and LBC predicts pHSIL/LSIL

(iii) If oncogenic HPV is not detected and cytology is negative at both visits, women are referred to routine screening.

Updated model assumptions

Diagnostic excision of the TZ is recommended\(^{§}\)

Women who had confirmed pHSIL and are concerned about fertility\(^{†}\) can have a repeat assessment at 6 and 18 months with an HPV and LBC co-test\(^{‡}\)

**| Diagnostic excision of the TZ is recommended regardless of whether the referring LBC is pHSIL or HSIL\(^{†}\) | Diagnostic excision of the TZ is recommended | Women who had confirmed pHSIL and are concerned about fertility\(^{†}\) can have a repeat assessment at 12 and 24 months with an HPV and LBC co-test\(^{‡}\) | Co-testing at 12 and 24 months |

**| Colposcopy if LBC pHSIL+ or oncogenic HPV (16/18) +ve (irrespective of LBC) | Otherwise, continue annual co-testing until 2 consecutive double negatives | Co-testing at 12 and 24 months | Otherwise, continue annual co-testing until 2 consecutive double negatives |

\(\text{TZ: Transformation zone}\)

pHSIL+: possible HSIL or higher-grade lesion

pLSIL+: possible LSIL or higher-grade lesion

\(^{\dagger}\) Based on Australian fertility rates for 2011, we have estimated the probability that a woman would have no further births from the age of 35 on as 64%

\(^{\ddagger}\) All women aged < 35 years will choose to defer excisional biopsy

\(^{†}\) 95% of women aged 35–39 will choose to defer excisional biopsy

\(^{‡}\) 8% of women aged 40–44 years will choose to defer excisional biopsy

\(^{§}\) All women will undergo diagnostic excision of the transformation zone at this point.

\(^{\dagger}\) Women have a co-test (HPV and LBC), along with a colposcopy, at both visits

\(^{\ddagger}\) A woman undergoes diagnostic excision of the transformation zone if oncogenic HPV (any type) is detected, or oncogenic HPV is not detected and LBC predicts pHSIL/LSIL

\(^{\ddagger\ddagger}\) If oncogenic HPV is not detected and cytology is negative at both visits, women are referred to routine screening.
Updates to colposcopy compliance assumptions

Modelling undertaken for the MSAC evaluation assumed that compliance with colposcopy referral was dependent on the accompanying cytology result, and was generally higher in women referred with a pHSIL/HSIL. This was based on observed data from the Victorian Cervical Cytology Register, and is likely due to the fact that, under the pre-renewal NCSP, women referred with a high-grade cytology prediction receive reminder letters and phone calls if they have not attended colposcopy within a certain interval (shorter than the interval for reminders sent for women without a high-grade cytology prediction). We sought advice on whether these assumptions should be revised by considering management protocols for following up women within the primary HPV screening arm of the Compass trial, given that the Compass protocol closely resembles the proposed clinical pathway recommended in this guideline. Based on Compass management, we assumed that:

- women who are referred for colposcopy (regardless of the reflex LBC result) are followed up in the same way as for women with a pHSIL/HSIL cytology under the pre-renewal NCSP.
- women will attend colposcopy at a rate similar to what is observed in women who test pHSIL/HSIL on cytology under the pre-renewal NCSP program.

Updates to HPV exit testing assumptions used in modelling

For the MSAC evaluation, when we provided predictions for women having primary HPV screening, we assumed that exit testing would be offered to women aged 60–64 years, which we described as screening ending at 64 years. As an exploratory analysis, we considered a scenario in which exit HPV testing would be offered to women aged 65–69 years, which we described as screening ending at 69 years. MSAC has since recommended that women have an exit HPV test between 70 and 74 years of age.

Furthermore, these new guidelines recommend women aged 70–74 years who have an are oncogenic HPV (any type) positive test result at their final screening test be referred directly to colposcopy, regardless of the HPV type or the reflex LBC result. This management process differs from the MSAC model, which assumed there was no referral to colposcopy for women who had an oncogenic HPV (not 16/18) positive test result but who had a negative LBC report. Therefore, we updated the model to account for this change in management of women at their final screening visit.

RESULTS

Note: The model incorporated assumptions about compliance with screening in the renewed NCSP after taking into account the introduction of a recall system for screening. The specific assumptions for adherence were described in detail in the MSAC evaluation and are summarised here (see screening compliance assumptions). The predicted impact of the renewed NCSP, and associated cervical cancer incidence and mortality reductions, are predicated on achieving the level of compliance assumed.

Incremental impact of the changes from the model used for MSAC

Table A.3 summarises the incremental impact of each change that was made from the model used for the MSAC evaluation. This was done to determine the relative impact of each change on overall model predictions. Incorporation of the new recommendations in these guidelines for women who were referred to colposcopy with a cytology report of negative or pLSIL/LSIL and had a (i) negative colposcopy, (ii) type 3 TZ (iii) a histologically confirmed < CIN2 lesion, or (iv) received treatment for CIN2/3, results in a further 3% reduction in cervical cancer incidence and mortality in unvaccinated cohorts and a 1–3% reduction in cohorts offered vaccination, compared with the prior predictions for the renewed NCSP. This change results in 2% more colposcopies in unvaccinated cohorts and 9% fewer colposcopies in cohorts offered vaccination.

Incorporation of the updated guidelines for women who were referred to colposcopy with a cytology report of pHSIL/HSIL and had a (i) negative colposcopy, (ii) type 3 TZ, or (iii) a biopsy-confirmed <CIN2 lesion results in a further 5–6% reduction in cervical cancer incidence and mortality in unvaccinated cohorts and a 4% reduction in cohorts offered vaccination, compared with the prior predictions for the renewed NCSP. The change results in an increase in colposcopy referrals of 7% in unvaccinated cohorts and 5% in cohorts offered vaccination. Incorporating the changes to the screening end-age, we predict a 2–3% reduction in cervical cancer incidence and mortality in both unvaccinated cohorts and cohorts offered vaccination, compared with the prior predictions for the renewed NCSP. This change results in a 1% increase in colposcopies for both unvaccinated cohorts and cohorts offered vaccination.

As an exploratory analysis, we also evaluated a scenario in which women were not managed differently at their final screening test at ages 70–74, and were instead managed the same way as women who tested HPV positive at younger ages (i.e. we assume that there is no special exit test offered to women at their final screen). In this case, we predict < 0.5% increase in cervical cancer incidence, compared with the scenario in which women are who have a positive oncogenic HPV (any type) test result are referred to colposcopy at their final test when aged 70–74 years. These findings suggest that extending the screening end-age has a substantial impact on effectiveness of the program, but providing different management for women who have an oncogenic HPV (any type) positive test result does not have as great an impact on effectiveness.
Table A.3. Changes in cervical cancer incidence, mortality and number of colposcopies predicted under the new model assumptions compared with pre-renewal NCSP

<table>
<thead>
<tr>
<th></th>
<th>Unvaccinated cohorts</th>
<th>Cohorts offered vaccination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cancer cases</td>
<td>Cancer deaths</td>
</tr>
<tr>
<td>MSAC model*</td>
<td>–19%</td>
<td>–21%</td>
</tr>
<tr>
<td>Updated model†</td>
<td>–31%</td>
<td>–36%</td>
</tr>
</tbody>
</table>

Incremental impact after incorporating each change

Referral LBC negative or pLSIL/LSIL and any of:		Unvaccinated cohorts	Cohorts offered vaccination
a) colposcopy result Type 3 TZ		–3%	–3%
b) histologically confirmed < CIN2		2%	–1%
c) colposcopy negative		–1%	–3%
d) treated for CIN2/3		–9%	

Referral LBC pHsIL/HSIL and any of:		Unvaccinated cohorts	Cohorts offered vaccination
a) colposcopy result Type 3 TZ		–5%	–4%
b) histologically confirmed < CIN2		0%	–4%
c) colposcopy negative		2%	

| Updated compliance assumptions | | –2% | |
| Exit HPV test offered at age 70–74 years (extend end-age by 5 years) | | –3% | |

	Unvaccinated cohorts	Cohorts offered vaccination				
	Cancer cases	Cancer deaths	Colposcopies	Cancer cases	Cancer deaths	Colposcopies
	–2%	–3%	7%	–2%	–1%	5%

NOTE:

Figures are based on the female Australian population as predicted for 2017. Due to rounding, direct adding of the incremental numbers may not result in the presented final impact number.

* Model assumptions used for the MSAC evaluation (for the base case MSAC evaluation).
† Model assumptions reflecting the updated recommendations in these guidelines.

Overall benefits of the renewed NCSP incorporating these guideline recommendations

The impact of the Renewed NCSP on predicted cervical cancer cases, deaths, colposcopies and treatments for CIN2/3, is shown in Table A.4. Under the renewed NCSP when these guidelines are incorporated, we predict a 31–36% reduction in cervical cancer cases and death in unvaccinated cohorts, and a 24–29% reduction in cohorts offered vaccination, compared with the pre-renewal NCSP. This is equivalent to 265 fewer cancer cases and 82 fewer deaths annually in unvaccinated cohorts, and 85 fewer cancer cases and 28 fewer deaths annually in cohorts offered vaccination.

Table A.4. Predicted annual numbers of cervical cancer cases and deaths for the pre-renewal NCSP and the renewed NCSP (showing differences in case numbers and relative percentage differences)

<table>
<thead>
<tr>
<th></th>
<th>Pre-renewal NCSP</th>
<th>Renewed NCSP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>If HPV vaccination had not been introduced</td>
<td>If HPV vaccination had not been introduced</td>
</tr>
<tr>
<td>Cervical cancer cases</td>
<td>850</td>
<td>584</td>
</tr>
<tr>
<td></td>
<td>353</td>
<td>(–265; –31%)</td>
</tr>
<tr>
<td>Cervical cancer deaths</td>
<td>227</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>94</td>
<td>(–82; –36%)</td>
</tr>
</tbody>
</table>

NOTE: Figures are based on female Australian population as predicted for 2017.
We also predict an increase in colposcopies for unvaccinated cohorts, but this increase will not be seen in cohorts offered vaccination. Although there would have been a substantial increase in colposcopies if HPV vaccination had not been introduced, it should be noted that 70% of these additional colposcopies would have occurred in women less than 35 years of age. However, all of these women will have been offered vaccination by 2017, when these new clinical guidelines will be implemented. After taking into account the effect of HPV vaccination, the overall impact of the renewed NCSP on colposcopy and treatment-related harms is expected to be as good or better, when compared to the pre-renewal NCSP.

Costs and cost-effectiveness

Table A.5 shows the estimated cost of the NCSP before and after renewal. If HPV vaccination had not been introduced, a 19% reduction in program costs is predicted under the renewed NCSP. For cohorts offered vaccination, a 26% reduction is predicted under the renewed NCSP. This is equivalent to a cost saving of $41 million per annum for unvaccinated cohorts and $50 million per annum for vaccinated cohorts. It should be noted that these cost savings may not be fully realised, since they are predicated on the assumption that there will be an overall reduction in GP visits due to a reduced number of screening visits. In practice, however, these screening visits may be replaced by routine visits for other conditions with no obvious reduction in costs to the health system.

Since the renewed NCSP is predicted to be both cost saving and life-year saving, it is not possible to calculate an incremental cost-effectiveness ratio compared with the pre-renewal NCSP. Table A.5 shows the disaggregated discounted costs and life-years predicted for the pre-renewal NCSP and the renewed NCSP.

<table>
<thead>
<tr>
<th></th>
<th>Pre-renewal NCSP</th>
<th>Renewed NCSP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual cost of the screening program</td>
<td>If HPV vaccination had not been introduced</td>
<td>$223 million</td>
</tr>
<tr>
<td></td>
<td>For cohorts offered vaccination as 12 year olds</td>
<td>$192 million</td>
</tr>
<tr>
<td>Discounted costs</td>
<td>$383</td>
<td>$304</td>
</tr>
<tr>
<td>Discounted life-years</td>
<td>21.6219</td>
<td>21.6229</td>
</tr>
</tbody>
</table>

NOTE: Calculations of the annual cost of the screening program are based on female Australian population as predicted for 2017.

1. Discounting at 5% per annum starting from 12 years of age.

CONCLUSION

After incorporating the management recommendations in these guidelines, the renewed NCSP is expected to be even more effective than previously estimated for the MSAC evaluation. After taking into account the impact of vaccination, the effect on colposcopies and treatment rates is expected to be consistent with current levels. The renewed NCSP is also is predicted to be both cost saving and life-years saving.

References

GUIDELINE DEVELOPMENT PROCESS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Karen Cantell – Co-author
Suzanne Hughes – Co-author
Dr Kate Simms – Co-author
Megan Smith – Co-author
Jutta von Dincklage – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
INTRODUCTION
The Australian Government Department of Health strategy for reviewing the policy and operation of the National Cervical Screening Program (NCSP) began in November 2011. In April 2014, the Medical Service Advisory Committee (MSAC) recommended that a 5-yearly primary human papillomavirus (HPV) test for women aged 25–69 years, including partial genotyping for HPV 16/18 and an exit test between 70 and 74 years of age, should replace the current 2-yearly Pap test for women aged 18–69 years.

Some aspects of the management pathway were specified by MSAC, including that:

- women with a positive oncogenic for HPV (16/18) test result should be referred for colposcopy
- reflex liquid-based cytology (LBC) would be performed on all women with a positive oncogenic HPV (any type) test result:
 - to inform colposcopy, in the case of a positive oncogenic HPV (16/18) test result
 - for triage, in the case of a positive oncogenic HPV (not 16/18) test result.
- women with a positive oncogenic HPV (not 16/18) test result and triage LBC prediction of possible high-grade squamous intraepithelial lesion (pHSIL) or a high-grade squamous intraepithelial lesion (HSIL) would be referred for colposcopy.

Subsequent to the MSAC recommendations, new clinical management guidelines were needed in Australia to:

- support the proposed renewed clinical pathway
- provide guidance for clinicians regarding the follow up of women with a positive screening result
- inform national cervical screening policies and operations
- inform the development of a National Cancer Screening Register
- develop health professional and consumer communications and resources.

The Department of Health commissioned Cancer Council Australia to develop the clinical management guidelines for the prevention of cervical cancer. The project formally commenced in June 2015, funded by the Department of Health.

GUIDELINE DEVELOPMENT GROUP AND GUIDELINE SCOPE
Professor Ian Hammond and Associate Professor Marion Saville, who were members of the National Cervical Screening Program Renewal Steering Committee, were appointed as chairs of this guideline project. A multi-disciplinary working party (Cancer Council Australia Cervical Cancer Screening Guidelines Working Party) was established, involving representatives from all relevant specialities and disciplines involved in the diagnosis and management of cervical cancer, including consumer representatives.
Declarations of interests were collated from all nominated individuals and evaluated prior to the first working party meeting. Management of competing interests describes the process and provides the complete Conflict of interest register, including evaluation outcomes. All working party members were advised to forward any further updates to their declarations of interest, in line with the Code of practice for dealing with conflict of interests[3]. Any updates were forwarded for evaluation and the register updated accordingly.

A project team based at Cancer Council Australia was responsible for project governance and management. A technical project team based at Cancer Council NSW conducted the systematic reviews, literature reviews and modelling required for this project. The technical team was also responsible for liaising with the working party members in regards to content development, content drafting and compiling the Appendix D. Technical report.

The clinical practice guidelines were developed according to the procedures and requirements for meeting the 2011 NHMRC standard for clinical practice guidelines. The development program was designed to meet the scientific rigour required by the standard for developing high-quality, evidence-based clinical practice guidelines. A series of NHMRC resources and handbooks[5][6][7][8][9][10][11][12][13] guided the process and outlined the major steps and expectations involved in developing guidelines. These documents provided the definitions and protocols for developing research questions and search strategies, conducting systematic literature reviews, summarising and assessing the relevant literature and finally, formulating and grading the recommendations. They also included checklists and templates created to satisfy designated standards of quality and process.

At an initial teleconference meeting, the working party confirmed the scope of the guidelines and the clinical questions to be included. The aim was to revise the 2005 NSCP guideline Screening to prevent cervical cancer: guidelines for the management of asymptomatic women with screen detected abnormalities.[14] The clinical questions addressed areas of uncertainty and clinical scenarios that required reconsideration as a result of the renewed NCSP. For completeness, MSAC recommendations and relevant NHMRC-approved 2005 recommendations [14] considered to be unaffected by the renewed National Cervical Screening Program were included. The method by which each recommendation was developed is identified in the guidelines (see Assessing the body of evidence and formulating recommendations).

The included clinical questions, as well as additional topics such as cervical cancer epidemiology and terminology, were allocated to specific working party members to act as lead author teams according to their areas of expertise.

STEPS IN PREPARING CLINICAL PRACTICE GUIDELINES TO NHMRC CRITERIA

The evidence underpinning the recommendations has been synthesised from systematic reviews of the literature and generated from modelling analyses for those aspects of clinical management involved in the pathway to colposcopy that constitute major changes to the NCSP. During the first working Party meeting it was agreed that certain 2005 NHMRC-approved guidelines sections remained valid, whereas others required review. For those requiring review, systematic reviews were undertaken to identify relevant evidence where new recommendations were anticipated, and general literature reviews were conducted when no significant changes were considered likely and it was anticipated that only additional practice points might be required. Based on the available evidence, the 2005 NHMRC-approved guidelines[14] have been combined with current revisions in this document to provide comprehensive recommendations for management.

For every clinical question the below steps were followed:

1. A structured clinical question in PICO format (population, intervention, comparator, outcomes) was developed by the working party.

2. For each question, a systematic or general literature review was undertaken as outlined in Figure B.1.

Systematic reviews were undertaken for most questions, as the aim was to develop evidence-based recommendations if the evidence permitted. As the systematic reviews were addressing questions concerned with the management flow-on effects of new screening tests, it was anticipated that there may be limited, if any evidence, available directly addressing many of the questions.

The working party determined, *a priori*, that in the event that a systematic review found no evidence directly addressing a PICO question, a general literature review was to be undertaken to inform the drafting of consensus-based recommendations, with the exception of three questions. For these three questions it was planned that the systematic reviews would be extended to include evidence that indirectly addressed the question and that modelling analyses would also be used to provide evidence for two of these questions.

For two questions clinical questions the working party did not anticipate that the NHMRC approved 2005 recommendations would be significantly impacted by the renewed National Cervical Screening Program and as a result determined a prior that only general reviews were to be undertaken to inform the drafting of additional practice points.
3. All systematic reviews and modelling analyses were documented in a Technical report and the results of each general review were summarised in a review summary.

4. Where available, the body of evidence for each systematic review and/or modelling analysis were assessed and recommendations and practice points formulated following the NHMRC process and recommendation categories.

 Where no evidence was found directly addressing a clinical question, a general review of the literature was considered when drafting consensus-based recommendations or practice points.

 Where a systematic review was not undertaken a general review of the literature was considered when drafting practice points.

 Adapted MSAC recommendations and consensus-based recommendations based on the 2005 NCSP guidelines are clearly identified.

5. Content narrative was developed based on the findings of the reviews.

DEVELOPING A STRUCTURED CLINICAL QUESTION

All proposed questions were reviewed on the basis of their purpose, scope and clinical importance to the target audience and those requiring systematic reviews were structured according to the PICO (populations, interventions, comparisons, outcomes) framework (see Appendix C. Clinical question list).

Systematic reviews and modelling analyses

Each question that was addressed by a systematic review and/or modelling analyses is accompanied by a detailed Technical report.

SEARCH FOR EXISTING RELEVANT GUIDELINES AND SYSTEMATIC REVIEWS

Relevant recent (2005 onwards) guidelines were identified by scanning the citations identified by the literature search, searching the National Guideline Clearinghouse and the Guidelines Resource Centre and, in the case of guidelines for screening immune-deficient women, consulting experts in that field.

To be considered for adoption, guidelines had to be directly relevant, based on systematic reviews of the evidence and meet the pre-specified criteria of scores of greater or equal to 70% for the domains rigour of development, clarity of presentation and editorial independence of the AGREE II instrument.

No existing clinical practice guidelines suitable for adoption were identified.
DEVELOPING A SEARCH STRATEGY FOR SYSTEMATIC REVIEWS

For each PICO question, literature search strategies were developed and conducted by the technical team. Most searches included terms for HPV and were limited or widened as necessary according to the PICO question. Search strategies were designed to maximise sensitivity and used both text terms and subject headings for each included electronic database. The following electronic databases were searched for articles published from 2004 until 31st August 2015:

- **Medline** – bibliographic references and abstracts to articles in a range of languages on topics such as clinical medical information and biomedicine, and including the allied health fields, biological and physical sciences
- **EMBASE** – major pharmacological and biomedical database indexing drug information from 4550 journals published in 70 countries
- **Cochrane Central Register of Controlled Trials (CENTRAL)** – contains references to controlled trials in health care
- **Database of Abstracts of Reviews of Effects** – contains details of systematic reviews that evaluate the effects of healthcare interventions and the delivery and organisation of health services
- **Health Technology Assessment** – details on ongoing and completed health technology assessments (studies of the medical, social, ethical, and economic implications of healthcare interventions).
- **The Cochrane Database of Systematic Reviews** – contains systematic reviews of primary research in human health care and health policy, and are internationally recognised as the highest standard in evidence-based health care.

A search filter to retrieve relevant literature considering Aboriginal and Torres Strait Islander peoples was added to each question.

The reference lists of all identified articles were checked for additional potentially relevant articles. The systematic literature search strategies for each PICO question are documented in the Technical report for of each question (see Appendix D. Technical report).

SCREENING OF LITERATURE RESULTS FOR SYSTEMATIC REVIEWS

All retrieved literature results were screened against pre-specified inclusion and exclusion criteria specific for each question (see Appendix D. Technical report) in two stages:

- **a) First screen**: the titles and abstracts of all retrieved literature were screened and only potentially relevant citations were retained.
- **b) Second screen**: the full text of each remaining citation was assessed against the pre-specified inclusion and exclusion criteria for that question. Articles that met the inclusion criteria were included in the systematic review. The retrieved articles that were not included and the reason for their exclusion were documented and are included in the technical reports (see Appendix D. Technical report).

CRITICAL APPRAISAL AND DATA EXTRACTION OF EACH INCLUDED ARTICLE IN SYSTEMATIC REVIEWS

For each included study, two assessors independently assessed the risk of bias using a study design specific assessment tool and where necessary pre-specified criteria. Any disagreements were adjudicated by a third reviewer.

The characteristics of the study and the relevant data was extracted and summarised in study characteristics and results tables. Each data extraction was checked by a second assessor.

These tables are included in Appendix D. Technical report.

SUMMARY OF THE RELEVANT EVIDENCE IN SYSTEMATIC REVIEWS

For each outcome examined, the results, level of the evidence according to NHMRC levels (Table B.1), the risk of bias due to study design, and the relevance of the evidence for each included study were documented in a body of evidence table in the Technical report for that question.
Table B.1. Designations of levels of evidence according to type of research question (NHMRC, 2009)

<table>
<thead>
<tr>
<th>Level</th>
<th>Intervention</th>
<th>Diagnosis</th>
<th>Prognosis</th>
<th>Aetiology</th>
<th>Screening</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>A systematic review of level II studies</td>
</tr>
<tr>
<td>II</td>
<td>A randomised controlled trial</td>
<td>A study of test accuracy with: an independent, blinded comparison with a valid reference standard, among consecutive patients with a defined clinical presentation</td>
<td>A prospective cohort study</td>
<td>A prospective cohort study</td>
<td>A randomised controlled trial</td>
</tr>
<tr>
<td>III-1</td>
<td>A pseudo-randomised controlled trial (i.e. alternate allocation or some other method)</td>
<td>A study of test accuracy with: an independent, blinded comparison with a valid reference standard, among non-consecutive patients with a defined clinical presentation</td>
<td>All or none</td>
<td>All or none</td>
<td>A pseudo-randomised controlled trial (i.e. alternate allocation or some other method)</td>
</tr>
</tbody>
</table>
| III-2 | A comparative study with concurrent controls:
Non-randomised, experimental trial
Cohort study
Case-control study
Interrupted time series with a control group
A comparison with reference standard that does not meet the criteria required for Level II and III-1 evidence | A comparison with reference standard that does not meet the criteria required for Level II and III-1 evidence | Analysis of prognostic factors amongst untreated control patients in a randomised controlled trial | A retrospective cohort study | A comparative study with concurrent controls:
Non-randomised, experimental trial
Cohort study
Case-control study |
| III-3 | A comparative study without concurrent controls:
Historical control study
Two or more single arm study
Interrupted time series without a parallel control group
A diagnostic case-control study | Diagnostic case-control study | A retrospective cohort study | A case-control study | A comparative study without concurrent controls:
Historical control study
Two or more single arm study
A diagnostic case-control study |
| IV | Case series with either post-test or pre-test/post-test outcomes | Study of diagnostic yield (no reference standard) | Case series, or cohort study of patients at different stages of disease | A cross-sectional study | Case series |

MODELLING ANALYSES

Modelling analyses were planned a priori to address two of the clinical questions which related to the management of women in whom HPV types 16 and/or 18 are not detected, but with a positive oncogenic HPV (not 16/18) test result. Clinical tests that allow partial genotyping for HPV 16/18 are comparatively new, and the overwhelming majority of trials of HPV-based screening used earlier clinical tests which did not specifically identify whether or not HPV types 16 and/or 18 were identified.

One clinical trial (ATHENA) compared cytology-based screening with a clinical HPV test which that provided partial genotyping, but however it did not randomise women with a positive oncogenic for non-16/18 HPV types (not 16/18) test result to different kinds of management. A second clinical trial (Compass) was underway in Australia at the time this guideline was commissioned; while directly relevant, longitudinal data were not yet available from this trial to address these clinical questions. Therefore, it was thought very likely that the systematic review would not identify any studies that could directly answer the question of how to manage women with a positive oncogenic HPV (not 16/18) test result.

It was also considered a priori that management of these women could not be informed by trials that reported outcomes in women with a positive oncogenic HPV (any type) test result, because their underlying risk would certainly be higher than, and not comparable to, the risk in women in whom HPV 16/18 was not detected but with a positive oncogenic HPV (not 16/18) test result. This consideration was made because the risk associated with HPV 16/18 is known to be far greater than that for other HPV types, and HPV 16/18 also generally make up a high proportion of infections among women with a positive oncogenic HPV (any type) test result, and thus would strongly influence the overall risk in that group.

Modelled analyses were undertaken using a simulation model that had previously been used in the effectiveness and economic evaluation of the proposed changes to the NCSP performed for MSAC. As part of the evaluation for MSAC, this model had been customised to include detailed modelling of both the pre-renewal NCSP in Australia, and of the proposed changes. It included detailed local data on screening behaviour, screening test performance calibrated to fit observed Australian pathology data, and detailed clinical management pathways informed by an expert advisory group, the Renewal Steering Committee (RSC). Model predictions for age-specific endpoints, such as cervical cancer incidence and mortality, and rates of screen-detected abnormalities, were consistent with observed Australian data. The detailed model of cervical cancer screening, diagnosis and cancer treatment and survival in Australia was overlaid on a natural history model which had been developed over the course of a decade. The natural history model had been validated against observed reductions in HPV infections since the inception of the NHVP. All model assumptions had been previously reviewed by the RSC, the Economic Subcommittee of MSAC and MSAC itself.

There are no NHMRC levels of evidence for modelling studies.

ASSESSING THE BODY OF EVIDENCE AND FORMULATING RECOMMENDATIONS

The working party participated in a face-to-face meeting at which the technical team presented the preliminary findings of the systematic reviews, general literature searches, and modelling analyses.

For clinical questions for which there was evidence from systematic reviews, the author teams, in collaboration with the technical team, assessed the volume of the evidence, its consistency, clinical impact, generalisability and applicability, and developed evidence statements (see Appendix D. Technical report) as documented in the NHMRC Evidence Statement. This process is described in NHMRC’s Additional levels of evidence and grades for recommendations for developers of guidelines (2009).

Following grading of the evidence and development of evidence statements, expert authors formulated evidence-based recommendations and determined a grade (Table B.2, Table B.3). Where a systematic review yielded insufficient evidence on which to base an evidence-based recommendation, the expert authors drafted consensus-based recommendations (Table B.4). Practice points, on topics outside the scope of the clinical questions, were developed to support recommendations, as necessary.

This guideline also includes recommendations developed outside the working group process (Table B.5):

- evidence-based recommendations by MSAC, based on systematic reviews undertaken during the NCSP renewal process, labelled as MSAC evidence-based recommendations
- recommendations determined by NCSP policy
- consensus-based recommendations modified from pre-renewal NCSP guidelines (2005).
Table B.2. Grading of recommendations

<table>
<thead>
<tr>
<th>Component of Recommendation</th>
<th>A Excellent</th>
<th>B Good</th>
<th>C Satisfactory</th>
<th>D Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume of evidence¹¹</td>
<td>One or more level I studies with a low risk of bias or several level II studies with a low risk of bias</td>
<td>One or two level II studies with a low risk of bias or a systematic review/ several level III studies with a low risk of bias</td>
<td>One or two level III studies with a low risk of bias, or level I or II studies with a moderate risk of bias</td>
<td>Level IV studies, or level I to III studies/systematic reviews with a high risk of bias</td>
</tr>
<tr>
<td>Consistency²²</td>
<td>All studies consistent</td>
<td>Most studies consistent and inconsistency may be explained</td>
<td>Some inconsistency reflecting genuine uncertainty around clinical question</td>
<td>Evidence is inconsistent</td>
</tr>
<tr>
<td>Clinical impact</td>
<td>Very large</td>
<td>Substantial</td>
<td>Moderate</td>
<td>Slight or restricted</td>
</tr>
<tr>
<td>Generalisability</td>
<td>Population/s studied in body of evidence are the same as the target population for the guideline</td>
<td>Population/s studied in the body of evidence are similar to the target population for the guideline</td>
<td>Population/s studied in body of evidence differ to target population for guideline but it is clinically sensible to apply this evidence to target population³</td>
<td>Population/s studied in body of evidence different to target population and hard to judge whether it is sensible to generalise to target population</td>
</tr>
<tr>
<td>Applicability</td>
<td>Directly applicable to Australian healthcare context</td>
<td>Applicable to Australian healthcare context with few caveats</td>
<td>Probably applicable to Australian healthcare context with some caveats</td>
<td>Not applicable to Australian healthcare context</td>
</tr>
</tbody>
</table>

¹ Level of evidence determined from level of evidence criteria
² If there is only one study, rank this component as ‘not applicable’
³ For example results in adults that are clinically sensible to apply children OR psychosocial outcomes for one cancer that may be applicable to patients with another cancer.

Source: National Health and Medical Research Council. NHMRC additional levels of evidence and grades for recommendations for developers of guidelines. Canberra: NHMRC; 2009. (https://www.nhmrc.gov.au/_files_nhmrc/file/guidelines/developers/nhmrc_levels_grades_evidence_120423.pdf)

Table B.3. Overall recommendation grades

<table>
<thead>
<tr>
<th>Grade of recommendation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Body of evidence can be trusted to guide practice</td>
</tr>
<tr>
<td>B</td>
<td>Body of evidence can be trusted to guide practice in most situations</td>
</tr>
<tr>
<td>C</td>
<td>Body of evidence provides some support for recommendation(s) but care should be taken in its application</td>
</tr>
<tr>
<td>D</td>
<td>Body of evidence is weak and recommendation must be applied with caution</td>
</tr>
</tbody>
</table>

Source: National Health and Medical Research Council. NHMRC levels of evidence and grades for recommendations for developers of guidelines. Canberra: NHMRC; 2009. (https://www.nhmrc.gov.au/_files_nhmrc/file/guidelines/developers/nhmrc_levels_grades_evidence_120423.pdf)
Table B.4. NHMRC approved recommendation types and definitions

<table>
<thead>
<tr>
<th>Type of recommendation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-based recommendation</td>
<td>A recommendation formulated after a systematic review of the evidence, indicating supporting references</td>
</tr>
<tr>
<td>Consensus-based recommendation</td>
<td>A recommendation formulated in the absence of quality evidence, after a systematic review of the evidence was conducted and failed to identify admissible evidence on the clinical question</td>
</tr>
<tr>
<td>Practice point</td>
<td>A recommendation on a subject that is outside the scope of the search strategy for the systematic review, based on expert opinion and formulated by a consensus process</td>
</tr>
</tbody>
</table>

Table B.5. Key to types of recommendations in these guidelines

<table>
<thead>
<tr>
<th>Type</th>
<th>Source</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidence-based</td>
<td>Developed for this guideline</td>
<td>Recommendations formulated by the guideline development group based on a systematic review of quality evidence and graded according to an NHMRC-approved method</td>
</tr>
<tr>
<td>recommendation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSAC evidence-based</td>
<td>Developed by MSAC from MSAC-commissioned</td>
<td>Evidence-based recommendation from MSAC review</td>
</tr>
<tr>
<td>recommendation</td>
<td>evaluation</td>
<td></td>
</tr>
<tr>
<td>Policy recommendation</td>
<td>Determined by NCSP policy</td>
<td>Recommendations based on NCSP policy</td>
</tr>
<tr>
<td>Consensus-based</td>
<td>Developed for this guideline</td>
<td>Recommendations formulated by the guideline development group, using a using a consensus-reaching process, when a systematic review was undertaken and insufficient quality evidence was found on which to base a recommendation</td>
</tr>
<tr>
<td>recommendation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consensus-based</td>
<td>Adopted/modified from pre-renewal NCSP</td>
<td>Recommendations based on 2005 NHMRC-approved guidelines formulated by the guideline development group, using a consensus-reaching process</td>
</tr>
<tr>
<td>recommendation</td>
<td>guidelines</td>
<td></td>
</tr>
</tbody>
</table>

When viewed online, the description for each recommendation appears when the reader places the cursor over the question mark symbol in the recommendation heading.
GENERAL LITERATURE REVIEWS

General reviews were undertaken to support the drafting of:
- consensus-based recommendations in the absence of evidence directly addressing the PICO question
- practice points.

The general reviews are documented in review summaries. The review summary for each question contains a summary of:
- potentially relevant guidelines, including the relevant 2005 NHMRC-approved guidelines.
- literature searches—undertaken using the Medline and Embase databases and designed to maximise specificity
- key characteristics and results of the most relevant studies identified.

The technical team presented their preliminary findings at a face-to-face meeting of the working party. Consensus-based recommendations and practice points were drafted by the lead authors, based on a consideration of any relevant evidence and expert opinion. These were then presented to the working party for consideration.

WRITING THE CONTENT

Guideline chapters were drafted using the following format:
- general introduction to the clinical question
- background to the clinical question, including its clinical importance and historical evidence, where relevant
- review of the evidence including, for systematic review evidence, the number, quality and findings of studies identified by the systematic review
- evidence statements for systematic reviews and modelling analyses in tabular form including levels of evidence and references for studies included in the systematic review,
- evidence-based recommendation(s) and corresponding grade(s), consensus-based recommendations and practice points
- implications for implementation of the recommendations where applicable, including possible effects on usual care, organisation of care, and any resource implications
- discussion, including unresolved issues, relevant studies currently underway, and future research priorities
- references.

The content draft was then reviewed by all working party members. The draft documents underwent several iterations until agreement on these drafts was reached.

REVIEW OF THE DRAFT CHAPTERS

All draft chapters were circulated to the working party. The whole group was asked to review the content and submit feedback. Members were asked to submit further suggestions on consensus-based recommendations and practice points.

A face-to-face meeting with all working party members was held to review and finalise the draft guidelines for public consultation. Prior to this meeting, the latest iteration draft guidelines were circulated via the wiki. All working party members were asked to review the content, individual recommendations and practice points in detail, and to identify and note any controversies and points to be discussed at the group meeting.

During the meeting, each recommendation and practice point was tabled as an agenda item. Each was reviewed and approved by consensus, which was reached by voting. The working party Chairperson nominated a particular recommendation/practice point to be reviewed and the panellists had the opportunity to discuss any issues and suggest revisions to recommendations and practice points. Each recommendation and practice point was approved once consensus was reached by the eligible panellists (excluding representatives of the funding bodies and any panellists who could not participate due to conflict of interest).

PUBLIC CONSULTATION

A complete draft of the guideline was sent out for public consultation from 15 February to 15 March 2016. Submissions were invited from the general public, professional societies and groups, and other relevant stakeholders. Relevant professional societies and groups, consumer groups and other relevant stakeholders were contacted.

All feedback on the draft received during the consultation period in Australia was compiled and sent to the relevant author team to review their draft content, assessing and considering the submitted comments. Each additional paper submitted during public consultation was assessed by the methodologist team against the review protocol.

All public consultation comments and suggested amendments were considered at a face-to-face meeting of the working party on 1 April 2016. Subsequent changes to the draft were agreed by consensus, based on consideration of the evidence and, in the absence of evidence, expert opinion. The consensus process was similar to that followed during earlier face-to-face working party meetings.

ORGANISATIONS ENDORSING THE GUIDELINES

The following medical colleges and professional bodies endorsed these guidelines:
- The Royal Australian College of General Practitioners (RACGP)
- The Royal Australian and New Zealand College of Obstetricians and Gynaecologists (RANZCOG)
- The Royal College of Pathologists of Australasia (RCPA)
- Australian Society for Colposcopy and Cervical Pathology (ASCCP)
- Australian Society of Gynaecologic Oncologists (ASGO).
CERVICAL SCREENING GUIDELINES

APPENDIX

DISSEMINATION AND IMPLEMENTATION

A multi-strategy approach will be followed for the dissemination and implementation of the guideline, as this has shown to positively influence guideline uptake.[21][22]

This will include a campaign to raise awareness of the new guidelines that incorporates organised media coverage through multiple outlets. The guidelines will be distributed directly to relevant professional and other interested groups and through meetings, national and international conferences, and other professional development and continuing medical education (CME) events. Local expert leaders will be identified and approached to facilitate dissemination and act as champions for the guidelines.

A significant effort will be made to have the guidelines introduced to senior undergraduate medical students and to encourage the relevant learned colleges to support the guidelines and to foster their integration into hospital and community practice through resident and registrar education activities.

The guidelines will be made available as an online guideline via the Cancer Council Australia Cancer Guidelines Wiki. The online guideline version increases availability as well as accessibility, and usage will be tracked and analysed with a web analytics solution. Interlinking and listing the guidelines on national and international guideline portal is an important part of the digital dissemination strategy. Important Australian health websites, such as EvIQ and healthdirect Australia will be approached to link to the online guideline. The guideline will also to be listed on national and international guideline portals such as Australia’s Clinical Practice Guidelines Portal, Guidelines International Network guidelines library and National Guidelines Clearinghouse. The Cancer Guidelines Wiki is a responsive website that is optimised for mobile and desktop access.

As part of the online guideline, an online learning module will be developed to reinforce the guidelines content knowledge for participants, thus support guideline implementation and uptake.

The Cancer Guidelines Wiki is based on semantic web technology, so the guidelines are available in a machine-readable format, which offers the possibility to easily integrate the guideline content with systems and web applications used in the Australian healthcare context. Use of the guidelines as part of core curriculum in specialty exams will be encouraged.

As the guidelines form part of the renewed National Cervical Screening Program, additional promotion and awareness of the guidelines will be incorporated into the overarching program communication activities for health professionals, pathologists and consumers in the lead up to 1 December 2017 and post implementation.

It is recognised that a planned approach is necessary to overcome specific barriers to implementation in particular settings and to identify appropriate incentives to encourage uptake of guideline recommendations. Implementation of the guidelines will require a combination of effective strategies and may include further CME initiatives and interactive learning, the development and promotion of computer-assisted decision aids and electronic decision-support systems, and the creation of audit and other clinical tools.

FUTURE UPDATES

The incoming literature updates will continue to be monitored for each review question. If there is strong evidence emerging in a specific area, even if not considered previously, the Cancer Council Australia Cervical Cancer Screening Guidelines Working Party will be reconvened to assess if this evidence warrants further systematic review(s) and updating of recommendations.

It is recommended that these guidelines should be updated within 5 years.

PROJECT FUNDING

The development of this guideline was funded through a grant by the Department of Health. The views of the funding body have not influenced the content of the guideline.
References

CLINICAL QUESTION LIST

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding

Author(s):

Professor Karen Canfell – Co-author
Jessica Darlington-Brown – Co-author
Michela Hall – Co-author
Suzanne Hughes – Co-author
Chloé Jennett – Co-author
Jie Bin Lew – Co-author
Dr Kate Simms – Co-author
Megan Smith – Co-author
Dr Louiza Velentzis – Co-author
Dr Susan Yuill – Co-author
Cancer Council Australia Cervical Cancer Screening Guidelines Working Party – Co-author
Clinical question list

CLINICAL QUESTION LIST
Questions 1
Relevant guidelines content page: Oncogenic HPV types not 16/18

Question 1a
Primary PICO
For women who are positive for hr-HPV types other than 16 or 18 and have pLSIL/dLSIL reflex liquid based cytology (intermediate risk), what is the safety and effectiveness of immediate colposcopy compared to colposcopy delayed by 12 months based on later HPV test results (assuming referral to colposcopy if any HPV positive at 12 months)?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who are positive for hr-HPV types other than 16 or 18 and have pLSIL/dLSIL (ASC-US/LSIL) liquid based cytology (intermediate risk)</td>
<td>Randomised or pseudo randomized controlled trial</td>
<td>Immediate Colposcopy</td>
<td>Repeat HPV test in 12 months; Colposcopy if positive</td>
<td>Cervical cancer mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cervical cancer diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

Secondary PICO
(In the event that no randomised or pseudo-randomised controlled trials were identified that directly addressed the primary PICO)
For women undergoing routine cervical screening what is the risk of CIN3+ for women who are positive for HPV oncogenic types other than 16 and 18 and have p/d LSIL cytology compared with women who have p/d LSIL cytology regardless of HPV status, p/d HSIL cytology regardless of HPV status, or are HPV 16/18+ regardless of cytology?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Exposure</th>
<th>Comparator</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women undergoing routine cervical</td>
<td>Longitudinal or cross-sectional</td>
<td>Positive for HPV oncogenic types other than 16 and 18 and have p/d LSIL</td>
<td>p/d LSIL or HPV 16/18+</td>
<td>CIN3+</td>
</tr>
<tr>
<td>screening</td>
<td>prognostic</td>
<td>cytology</td>
<td>p/d HSIL or HPV 16/18+</td>
<td>CIN2+</td>
</tr>
</tbody>
</table>

Question 1b

Primary PICO

For women who are positive for hr-HPV types other than 16 or 18 and have negative or pLSIL/dLSIL reflex liquid based cytology (intermediate risk), what is the safety and effectiveness of repeating HPV testing in 12 and 24 months compared to repeating HPV test at 12 months only before returning to 5 yearly screening?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who are positive for hr-HPV types other than 16 or 18 and have</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Repeat HPV test in 12 and 24 months; Colposcopy and reflex LBC if positive</td>
<td>Repeat HPV test in 12 months; Colposcopy if positive and if negative</td>
<td>Cervical cancer mortality</td>
</tr>
<tr>
<td>negative or pLSIL/dLSIL (ASC-US/LSIL) liquid based cytology (intermediate</td>
<td></td>
<td>or if both negative discharge back to screening</td>
<td>discharge to screening</td>
<td>Cervical cancer diagnosis</td>
</tr>
<tr>
<td>risk)</td>
<td></td>
<td></td>
<td></td>
<td>Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

Secondary PICO

(In the event that no randomised or pseudo-randomised controlled trials were identified that directly addressed the primary PICO)

For women undergoing routine cervical screening what is the risk of subsequent CIN3+ for women who are positive for HPV oncogenic types other than 16 and 18 and have negative cytology compared with women who have p/d LSIL regardless of HPV status or who have p/d LSIL and are positive for HPV oncogenic types other than 16 and 18?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Exposure</th>
<th>Comparator</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women undergoing routine cervical</td>
<td>Longitudinal prognostic</td>
<td>Positive for HPV oncogenic types other than 16 and 18 and have NILM</td>
<td>p/d LSIL or positive for HPV</td>
<td>CIN3+</td>
</tr>
<tr>
<td>screening</td>
<td></td>
<td>cytology</td>
<td>oncogenic types other than 16 /18 and have p/d LSIL cytology</td>
<td>CIN2+</td>
</tr>
</tbody>
</table>

254
QUESTION 2
Relevant guidelines content page: Normal colposcopic findings following LBC prediction of LSIL or HSIL

Question 2a
Primacy PICO
For HPV positive women who are not in treatment follow-up and who have negative or LSIL cytology and who have undergone colposcopy and the colposcopy was negative, what is the safety and effectiveness of testing with repeat HPV test at 12 months when compared with repeat cytology and HPV testing in 12 months?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women who have undergone colposcopy and the colposcopy was negative and cytology was: i. negative, ii. p/d LSIL</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Repeat HPV test at 12 months; Colposcopy (and reflex LBC test) if positive If negative HPV test in 12 months</td>
<td>Repeat cytology and HPV testing at 12 months: Colposcopy if HPV positive test or if cytology pHSIL or worse, and another 12 months follow-up if HPV negative p/dLSIL; repeat HPV and cytology test in 12 months if HPV negative and cytology p/dLSIL or negative</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

Secondary PICO
(In the event that no randomised or pseudo-randomised controlled trials were identified that directly addressed the primary PICO)

For HPV positive women who are not in treatment follow-up and who have negative or p/dLSIL cytology on referral and who had colposcopy and the colposcopy was negative what are the predictors of subsequent detection of high-grade disease?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Exposure</th>
<th>Comparator</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who have p/dLSIL or negative cytology who have undergone colposcopy and no abnormalities were seen on colposcopy</td>
<td>Cohort</td>
<td>Referral cytology Referral HPV status Age</td>
<td>Other Referral cytology Referral HPV status Age</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

Question 2b
For women who are HPV positive with p/dHSIL referral cytology and p/dLSIL or less after cytologic review and colposcopy is negative, what is the safety and effectiveness of conservative management compared with excision of the transformation zone?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women who have undergone colposcopy and the colposcopy was negative and referral cytology was p/d HSIL and review cytology was p/d LSIL or less</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Conservative management</td>
<td>Excision of the transformation zone</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

dHSIL = definite HSIL; dLSIL = definite LSIL; HSIL = high-grade squamous intraepithelial lesion; LSIL = low-grade squamous intraepithelial lesion pHsIL = possible HSIL; pLSIL = possible LSIL
Question 2c

For women who are HPV positive with p/dHSIL referral cytology and p/dHSIL after cytologic review and colposcopy is negative, what is the safety and effectiveness of cytologic and colposcopic follow-up at 3-6 months compared with excision of the transformation zone?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women who have undergone colposcopy and the colposcopy was negative and referral and review cytology was p/d HSIL</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Conservative management; cytologic and colposcopic follow-up at 3-6 months</td>
<td>Excision of the transformation zone</td>
<td>Cervical cancer mortality; Cervical cancer diagnosis; Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTIONS 3

Relevant guidelines content page: Type 3 TZ (previously termed ‘unsatisfactory’) colposcopy following LBC prediction of LSIL or HSIL.

Question 3a

For HPV positive women currently not in treatment follow-up and have negative or LSIL cytology who have undergone colposcopy and the colposcopy was unsatisfactory what is the safety and effectiveness of repeat HPV test at 12 months compared with repeat cytology and HPV testing in 12 months?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women who have undergone colposcopy and the colposcopy was unsatisfactory and cytology was: i. negative, ii. p/d LSIL</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Repeat HPV test at 12 months; Colposcopy (and reflex LBC test) if positive and if negative HPV test in 12 months</td>
<td>Repeat cytology and HPV testing at 12 month; Colposcopy if HPV positive test or if cytology pH SIL or worse, and another 12 months follow-up if HPV negative p/dLSIL; repeat HPV and cytology test in 12 months if HPV negative and cytology p/dLSIL or negative</td>
<td>Cervical cancer mortality; Cervical cancer diagnosis; Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

Question 3b

For HPV-positive women with a referral cytology finding of p/dHSIL and who have an unsatisfactory colposcopy, what is the safety and effectiveness of conservative management compared with diagnostic excision of the transformation zone?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women who have undergone colposcopy and the colposcopy was unsatisfactory and cytology was: p/d HSIL</td>
<td>Randomized or pseudo-randomized controlled trial</td>
<td>Conservative management: Co-testing at 3-6 months or repeat HPV test at 12 months</td>
<td>Diagnostic excision of the transformation zone</td>
<td>Cervical cancer mortality; Cervical cancer diagnosis; Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>
QUESTION 4
Relevant guidelines content page: Chapter 9. Management of histologically confirmed low-grade squamous abnormalities

For HPV positive women currently not in treatment follow-up who have undergone colposcopy (without treatment) with colposcopy LSIL and CIN 1 or less on biopsy what is the safety and effectiveness of excisional treatment or testing with repeat HPV test at 12 months when compared with repeat cytology and HPV testing in 12 months?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV positive women, who have undergone colposcopy and colposcopy LSIL, confirmed by biopsy CIN1 or less, and referral cytology was:</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Excisional treatment or Repeat HPV test at 12 months</td>
<td>i. Negative cytology or p/d LSIL: Repeat cytology and HPV testing at 12 months: Colposcopy if HPV positive test or if cytology pHSIL or worse, and another 12 months follow-up if HPV negative p/dLSIL: repeat HPV and cytology test in 12 months if HPV negative and cytology p/dLSIL or negative ii. p/dHSIL: repeat cytology and colposcopy in 6 months</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTIONS 5
Relevant guidelines content page: Investigation of cytological glandular abnormalities

Question 5a
For women who are HPV positive with atypical endocervical cells of undetermined significance (confirmed on review) and negative colposcopy what is the safety and effectiveness of repeating HPV and cytology testing when compared with treatment with excisional cone biopsy?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who are HPV positive with atypical endocervical cells of undetermined significance (confirmed on review) and colposcopy negative</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Repeat HPV and liquid based cytology testing at 6 months</td>
<td>Excisional cone biopsy cervix</td>
<td>Cervical cancer mortality Other gynaecologic cancer diagnosis (endometrial, ovarian) Cervical cancer diagnosis Precancerous high grade lesion (including AIS) detection</td>
</tr>
</tbody>
</table>
Question 5b

For women who are HPV positive with atypical glandular cells of undetermined significance (AGUS) or possible high grade glandular lesion (confirmed on review) and negative colposcopy what is the safety and effectiveness of repeating HPV and cytology testing when compared with treatment with excisional cone biopsy?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who are HPV positive with AGUS or possible HGGA (confirmed on review) and colposcopy negative</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Repeat HPV and liquid based cytology testing at 6 months</td>
<td>Excisional cone biopsy cervix</td>
<td>Cervical cancer mortality, Cervical cancer diagnosis, Endometrial cancer diagnosis, Ovarian cancer diagnosis, Precancerous high grade lesion (including AIS) detection</td>
</tr>
</tbody>
</table>

QUESTION 6

Relevant guidelines content page: Treatment of HSIL CIN2

For women with biopsy confirmed CIN2 what is the safety and effectiveness of p16 immunohistochemistry and treating only p16 positive CIN2 while conservatively managing p16 negative CIN2 when compared with treating all CIN2 cases?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with biopsy confirmed CIN2</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Using p16 immunohistochemistry to stratify management: p16 positive cases treated with excision and p16 negative cases conservatively managed</td>
<td>Treat all CIN2 with excision of transformation zone.</td>
<td>Cervical cancer mortality, Cervical cancer diagnosis, Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTION 7

Relevant guidelines content page: Follow-up after excisional treatment for AIS

For women who are HPV positive with adenocarcinoma in situ (AIS) or possible high-grade glandular lesion cytology or biopsy confirmed AIS, what is the safety and effectiveness of large loop excision of the transformation zone (LLETZ), Fischer cone, laser cone or straight wire/needle excision of the transformation zone (SWETZ/NETZ) compared with cold knife cone biopsy?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who are HPV positive with AIS or possible high-grade glandular lesion cytology or biopsy confirmed AIS</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>LLETZ or Fischer cone or laser cone or SWETZ or NETZ or Any electro-surgery of the transformation zone</td>
<td>Cold knife cone biopsy</td>
<td>Cervical cancer mortality, Cervical cancer diagnosis, Precancerous high grade lesion (including recurrent AIS) detection, Completeness of excision, Depth of excision</td>
</tr>
</tbody>
</table>
QUESTION 8
Relevant guidelines content page: Investigation of abnormal vaginal bleeding

For women with postcoital, intermenstrual bleeding or heavier periods (menorrhagia), what is the safety and effectiveness of direct colposcopy compared with HPV test and cytology?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women with postcoital (PCB) or intermenstrual bleeding (IMB) or menorrhagia</td>
<td>Randomized or pseudo-randomized controlled trial</td>
<td>Direct referral to colposcopy</td>
<td>Cytology and HPV</td>
<td>Cervical cancer mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cervical cancer diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTION 9
Relevant guidelines content page: Screening in immune-deficient women

For women who are at higher risk of cervical cancer due to immunosuppression what is the safety and effectiveness of screening using strategies other than those recommended for the general population compared to those recommended for the general population?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chronically immunosuppressed or immunocompromised asymptomatic women or Potentially immune suppressed or immune compromised women</td>
<td>Screening randomized controlled or pseudo-randomized trial</td>
<td>Modified recommended screening strategy: starting at an age <25 years and/or screening intervals less than 5 years and/or referring all HPV positive women to colposcopy irrespective of reflex cytology result</td>
<td>Recommended screening strategy Primary HPV screening every 5 years from ages 25 – 69 years using partial genotyping with women positive for HPV16/18 referred to colposcopy and women positive for other oncogenic types undergoing cytology triage</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTION 10
Relevant guidelines content page: Women who have experienced early sexual activity or have been victims of sexual abuse

For women with a history of sexual abuse or early sexual debut what is the safety and effectiveness of screening using strategies other than those recommended for the general population compared to those recommended for the general population?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>History of sexual abuse or early sexual debut</td>
<td>Screening randomized or pseudo-randomized controlled trial</td>
<td>Modified recommended screening strategy: Starting at an age <25 years</td>
<td>Recommended screening strategy Primary HPV screening every 5 years from ages 25 – 69 years using partial genotyping with women positive for HPV16/18 referred to colposcopy and women positive for other oncogenic types undergoing cytology triage</td>
<td>Cervical cancer mortality Cervical cancer diagnosis Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>
QUESTION 11
Relevant guidelines content page: Screening in DES-exposed women

For women who were exposed to diethylstilboestrol (DES) in utero and their daughters what is the safety and effectiveness of screening using strategies other than those recommended for the general population compared to those recommended for the general population?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asymptomatic women exposed in utero to DES and their daughters</td>
<td>Screening randomized or pseudo-randomized controlled trial</td>
<td>Current practice: Annual vaginal examination, cervical and vaginal cytology test, HPV test and colposcopy of the lower genital tract</td>
<td>Recommended screening strategy for general population: Primary HPV screening every 5 years from ages 25 – 69 years using partial genotyping with women positive for HPV16/18 referred to colposcopy and women positive for other oncogenic types undergoing cytology triage</td>
<td>Cervical cancer mortality</td>
</tr>
</tbody>
</table>

QUESTION 12
Relevant guidelines content page: Screening in Aboriginal and Torres Strait Islander women

For women who are of Aboriginal or Torres Strait Islander descent what is the safety and effectiveness of screening using strategies other than those recommended for the general population compared to those recommended for the general population?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women of Aboriginal or Torres Strait Islander descent</td>
<td>Screening randomized or pseudo-randomized controlled trial</td>
<td>Modified recommended screening strategy: - starting at an age <25 years - other</td>
<td>Recommended screening strategy for general population: Primary HPV screening every 5 years from ages 25 – 69 years using partial genotyping with women positive for HPV16/18 referred to colposcopy and women positive for other oncogenic types undergoing cytology triage</td>
<td>Cervical cancer mortality</td>
</tr>
</tbody>
</table>

QUESTION 13
Relevant guidelines content page: Screening in pregnancy

For women who are pregnant update the literature of management of abnormal cytology in pregnancy p.74 from the old guidelines. Describe guidance for excluding presence of invasive cancer. How can we support the exclusion of the presence of the invasive cervical cancer? Are there any circumstances that you would manage or treat pregnant women differently to the general population?
QUESTION 14
Relevant guidelines content page: After total hysterectomy

For groups of women (literature review or PICO) who have had a hysterectomy. What should the recommendation be in regard to further ‘screening’?

1. Women with total hysterectomy for benign conditions who have never had an abnormal HPV or cytology. Do they need any further screening?

2. Women who have had in the past been HPV positive with high grade abnormality (squamous or glandular) who have been treated satisfactorily and are on surveillance or have returned to normal screening, who then have a total hysterectomy with no evidence of abnormality on the hysterectomy specimen.

3. Women who have had a high grade abnormality treated by total hysterectomy, with complete excision of the lesion in the hysterectomy specimen. What follow up would be reasonable.

4. Women who have had a high grade lesion (CIN2+) who have been treated and have completed test of cure and returned to routine screening, subsequently have hysterectomy with no abnormality in the hysterectomy specimen. Is there any need for further screening?

QUESTION 16
Relevant guidelines content page: Test of Cure after treatment for HSIL (CIN2/3)

For women have been treated for a high grade precancerous squamous lesion what is the safety and effectiveness of testing with HPV test and cytology at 12 months after treatment and discharging if double-negative compared with testing at 12 and 24 months and discharging if double-negative at both 12 and 24 months?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women who have been treated for high grade precancerous squamous lesions</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Cytology and HPV testing 12 months after treatment with discharge if double negative</td>
<td>Cytology and HPV testing 12 and 24 months after treatment with discharge if double negative on both occasions</td>
<td>Cervical cancer mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cervical cancer diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precancerous high grade lesion detection</td>
</tr>
</tbody>
</table>

QUESTION 17
Relevant guidelines content page: Follow-up after excisional treatment for AIS

For women have been treated for adenocarcinoma in situ (AIS) with cone excision or LEEP and with clear histologic margins what is the safety and effectiveness of cytology and HPV testing at 12 and 24 months and discharging if double-negative at both 12 and 24 months or completion hysterectomy compared to cytology?

<table>
<thead>
<tr>
<th>Population</th>
<th>Study design</th>
<th>Intervention</th>
<th>Control</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Women treated for AIS with cone excision or LEEP with complete excision and clear histological margins</td>
<td>Randomized or pseudo randomized controlled trial</td>
<td>Cytology and HPV testing 12 and 24 months after treatment with discharge if double negative on both occasions or Completion hysterectomy</td>
<td>Annual cytology</td>
<td>Cervical cancer mortality</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cervical cancer diagnosis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Precancerous high grade lesion (including recurrent AIS) detection</td>
</tr>
</tbody>
</table>
TECHNICAL REPORT

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Technical report

This Technical Report accompanies the Clinical management guidelines for the prevention of cervical cancer, developed by Cancer Council Australia.

It outlines the guideline development process and methodology, lists the clinical questions, provides all accompanying NHMRC Statement Forms, the detailed technical documentation for each question and the risk of bias assessment tools used to assess the included literature as a result of a systematic review.

CONTENTS

Guideline Development Process

Figure 1. Overview review process

```
Systematic Review?
  Yes (pre-specified)  No (pre-specified)
  Direct evidence?
    Yes  No
    Evidence-based recommendation (None)  General review
    Modeling evidence (pre-specified for Q1a & Q1b)
  Systematic review of indirect evidence?
    Yes (pre-specified)  No (pre-specified)
    Evidence-based recommendation? (Q1a & b, Q2a)
    General review  Consensus-based recommendation (Q2b & c, Q3–12, Q16–17)
  Practice point (For Q13 & Q14)
```
OVERVIEW REVIEW PROCESS

Clinical question list

NHMRC Evidence statements forms
- Evidence Statement question 1a
- Evidence Statement question 1b
- Evidence Statement question 2a

Systematic review, modelling and literature review reports

Management of oncogenic HPV test results - Oncogenic HPV types not 16/18
- Systematic review report question 1a
- Systematic review report question 1b
- Modelling report question 1a & 1b

Colposcopy - Normal colposcopic findings following LBC prediction of LSIL or HSIL
- Systematic review report question 2a
- Systematic review report question 2b
- Systematic review report question 2c
- General evidence summary table question 2b
- General evidence summary table question 2c

Colposcopy - Type 3 TZ (previously termed ‘unsatisfactory’) colposcopy following LBC prediction of LSIL or HSIL
- Systematic review report question 3a
- Systematic review report question 3b
- General evidence summary table question 3a
- General evidence summary table question 3b

Management of histologically confirmed low-grade squamous abnormalities
- Systematic review report question 4
- General evidence summary table question 4

Management of histologically confirmed high-grade squamous abnormalities

Treatment of HSIL
- Systematic review report question 6
- General evidence summary table question 6

Test of Cure after treatment for HSIL (CIN2/3)
- Systematic review report question 16
- General evidence summary table question 16
Management of glandular abnormalities

Investigation of cytological glandular abnormalities
- Systematic review report question 5a
- Systematic review report question 5b
- General evidence summary table question 5a
- General evidence summary table question 5b
- Follow-up after excisional treatment for AIS
- Systematic review report question 7
- Systematic review report question 17
- General evidence summary table question 7
- General evidence summary table question 17

Screening in Aboriginal and Torres Strait Islander women
- Systematic review report question 12
- General evidence summary table question 12

Screening after total hysterectomy
- Literature summary and evidence report question 14

Screening in pregnancy
- Literature summary and evidence report question 13

Screening in women who have experienced early sexual activity or have been victims of sexual abuse
- Systematic review report question 10
- General evidence summary table question 10

Screening in immune-deficient women
- Systematic review report question 9
- General evidence summary table question 9

Screening in DES-exposed women
- Systematic review report question 11
- General evidence summary table question 11

Investigation of abnormal vaginal bleeding
- Systematic review report question 8
- General evidence summary table question 8

Cohort studies (risk factors) risk of bias assessment tool
- Cohort studies risk of bias assessment form
- Cohort studies risk of bias assessment help sheet
WORKING PARTY MEMBERS AND CONTRIBUTORS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Working party members and contributors

CERVICAL CANCER SCREENING GUIDELINES WORKING PARTY MEMBERS AND CONTRIBUTORS

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor Ian Hammond</td>
<td>Chair, Working Party; Chair Steering Committee for the Renewal Implementation Project, National Cervical Screening Program, Department of Health, Australia; Adjunct Professor, School of Anatomy, Physiology and Human Biology, University of Western Australia; Clinical Professor, School of Women’s and Infants Health, University of Western Australia</td>
</tr>
<tr>
<td>A/Professor Marion Saville</td>
<td>Deputy Chair, Working Party; Executive Director, Victorian Cytology Service Incorporated, VIC</td>
</tr>
<tr>
<td>A/Professor Lyndal Anderson</td>
<td>Senior Staff Specialist, Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, NSW</td>
</tr>
<tr>
<td>Emeritus Professor Bruce Armstrong</td>
<td>Emeritus Professor, School of Public Health, The University of Sydney, NSW and Adjunct Professor, School of Population Health, The University of Western Australia</td>
</tr>
<tr>
<td>A/Professor Deborah Bateson</td>
<td>Medical Director, Family Planning NSW; Clinical Associate Professor, Obstetrics, Gynaecology and Neonatology, The University of Sydney, NSW</td>
</tr>
<tr>
<td>A/Professor Alison Brand</td>
<td>Chair, Australia New Zealand Gynaecological Oncology Group (ANZGOG); Associate Professor and Clinical Senior Lecturer, Obstetrics, Gynaecology and Neonatology, The University of Sydney; Staff Specialist, Westmead Hospital, NSW</td>
</tr>
<tr>
<td>Ms Kirsteen Fleming</td>
<td>State Nurse Coordinator, Family Planning NSW</td>
</tr>
<tr>
<td>Dr Andrea Garrett</td>
<td>Gynecologic Oncologist, VMO at The Wesley Hospital and Royal Brisbane and Women’s Hospital, Brisbane</td>
</tr>
<tr>
<td>Ms Kim Hobbs</td>
<td>Clinical Specialist Social Worker, Departments of Gynaecological Cancer and Social Work, Westmead Hospital NSW</td>
</tr>
<tr>
<td>Ms Roslyn Moore</td>
<td>Consumer representative</td>
</tr>
<tr>
<td>Dr Joanne Mountford</td>
<td>General Practitioner and Liaison Physician, Victorian Cytology Service Incorporated, VIC</td>
</tr>
<tr>
<td>A/Professor Selvan Pather</td>
<td>Staff Specialist, Chris O’Brien Lifehouse; Clinical Associate Professor, Obstetrics, Gynaecology and Neonatology, The University of Sydney, NSW</td>
</tr>
<tr>
<td>Dr Larissa (Lara) Roeske</td>
<td>General Practitioner and Liaison Physician, Victorian Cytology Service Incorporated, VIC</td>
</tr>
<tr>
<td>Ms Lisa Whop</td>
<td>PhD Candidate & Research Fellow, Menzies School of Health Research, QLD</td>
</tr>
<tr>
<td>Ms Chenyi Wong</td>
<td>Consumer representative</td>
</tr>
<tr>
<td>Mr C David H Wrede</td>
<td>Consultant Gynaecologist, Lead Clinician for Dysplasia, The Royal Women’s Hospital, Melbourne and the Parkville Gynaecology Group</td>
</tr>
<tr>
<td>Professor Gordon Wright</td>
<td>Professor, Pathology, Faculty of Health Sciences and Medicine, Bond University; Queensland Medical Laboratory, Pathology Department, Gold Coast Hospital, QLD</td>
</tr>
</tbody>
</table>
OBSERVERS/NON VOTING MEMBERS (CERVICAL CANCER SCREENING PROGRAMS)

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Alison Lang</td>
<td>Assistant Director, Population Health Division, Department of Health, ACT</td>
</tr>
<tr>
<td>Dr Alison Budd</td>
<td>Senior data analyst, Cancer & Screening Unit, Australian Institute of Health and Welfare, ACT</td>
</tr>
<tr>
<td>Ms Nerida Steel</td>
<td>Program Manager, WA Cervical cancer Prevention Program, WA</td>
</tr>
<tr>
<td>Dr Gary Fentiman</td>
<td>National Cervical Screening Programme, National Screening Unit, Ministry of Health, New Zealand</td>
</tr>
</tbody>
</table>

CANCER COUNCIL AUSTRALIA GUIDELINE PROJECT TEAM AND CANCER COUNCIL NSW SYSTEMATIC REVIEW AND MODELLING TEAM

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Jutta von Dincklage</td>
<td>Head, Clinical Guidelines Network, Cancer Council Australia</td>
</tr>
<tr>
<td>Ms Laura Wuellner</td>
<td>Project Manager, Clinical Guidelines Network, Cancer Council Australia</td>
</tr>
<tr>
<td>Professor Karen Canfell</td>
<td>Director, Cancer Research Division, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Jessica Darlington-Brown</td>
<td>Project Manager, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Michaela Hall</td>
<td>Research Assistant- Modelling technical support, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Suzanne Hughes</td>
<td>Project Officer, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Harriet Hui</td>
<td>Research Assistant, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Chloe Jennett</td>
<td>Research Assistant, Cancer Research Division, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Jie Bin Lew</td>
<td>Senior Research Programmer, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Ms Megan Smith</td>
<td>Program Manager, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Dr Kate Simms</td>
<td>Modelling team member, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
<tr>
<td>Dr Louiza Velentzis</td>
<td>Post-doctoral Research Fellow, Cancer Research Division, Cancer Council NSW</td>
</tr>
<tr>
<td>Dr Susan Yulli</td>
<td>Research Assistant, Cervical Cancer Guidelines Cancer Screening Group, Cancer Council NSW</td>
</tr>
</tbody>
</table>

MEDICAL WRITER/EDITOR

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Jennifer Harman</td>
<td>Medical Editor, Meducation, NSW</td>
</tr>
</tbody>
</table>

Note: The titles and affiliations of Working Party members and contributors were current at the time of guidelines publication.
PROJECT TEAM CONTRIBUTIONS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Project team contributions

CANCER COUNCIL AUSTRALIA GUIDELINE PROJECT TEAM AND CANCER COUNCIL NSW SYSTEMATIC REVIEW AND MODELLING TEAM

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Jutta von Dincklage</td>
<td>Head, Clinical Guidelines Network, Cancer Council Australia</td>
<td>Provided project governance, guideline development management and lead technical development of online guidelines.</td>
</tr>
<tr>
<td>Ms Laura Wuellner</td>
<td>Project Manager, Clinical Guidelines Network, Cancer Council Australia</td>
<td>Provided project management for content revision, including wiki and referencing.</td>
</tr>
<tr>
<td>Prof Karen Canfell</td>
<td>Director, Cancer Research Division, Cancer Council NSW</td>
<td>Led the CCNSW technical team and provided oversite of the systematic reviews and all modelled evaluations.</td>
</tr>
<tr>
<td>Ms Jessica Darlington-Brown</td>
<td>Project Manager, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Project management of the CCNSW technical team and assisting with development and reviewing of the content of the cervical cancer guidelines wiki</td>
</tr>
<tr>
<td>Ms Michaela Hall</td>
<td>Research Assistant- Modelling technical support, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Performed the modelled evaluation of the risk assessment for Chapter 6 and assisted in the modelled effectiveness and cost effectiveness evaluation for Chapter 6.</td>
</tr>
<tr>
<td>Ms Suzanne Hughes</td>
<td>Project Officer, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Acted as the lead systematic reviewer, specific contributions include the following: undertook systematic reviews for chapters 6, 8, 10 – 11, 15 and 17. undertook general literature reviews for parts of chapters 8 and 11. Drafted summary points or sections of evidence summary tables for parts of chapters 6, 8, 9 and 11. Reviewed and updated literature summaries for chapters 9 - 11. Reviewed and updated parts of chapters 6, 8 - 11. Contributed to draft of Appendix 2.</td>
</tr>
<tr>
<td>Ms Harriet Hui</td>
<td>Research Assistant, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Assisted with systematic reviews, referencing, collating public consultation comments from various stakeholders, developing and finalising the consultation submission register and developing the glossary. Reviewing content on the cervical cancer guidelines wiki and development of the flowcharts.</td>
</tr>
<tr>
<td>Ms Chloe Jennett</td>
<td>Research Assistant, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Assisted with various systematic reviews, upload of evidence and content onto the cervical cancer guidelines wiki and assisting the Cancer Council NSW project manager throughout the duration of the project.</td>
</tr>
<tr>
<td>Ms Jie Bin Lew</td>
<td>Senior Research Programmer, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW</td>
<td>Assisted in the modelled effectiveness and cost effectiveness evaluation and in developing systematic review questions.</td>
</tr>
<tr>
<td>Name</td>
<td>Association</td>
<td>Contribution</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>
| Ms Megan Smith | Program Manager, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW | Performed systematic reviews, assisted in the modelled effectiveness and cost effectiveness evaluation and in developing systematic review questions and led the writing of several chapters, specific contributions include:
Co-drafted Chapter 16 and Appendix B.
Reviewed and updated chapters 1, 6, 12, 13, 14, 15, 16, 17, 18 and 20.
Reviewed and updated literature summaries for chapters 6, 10, 11, 12, 13, 14, 15, 16, 17, and 18.
Extracted data and contributed to literature review for Chapter 16.
Drafted summary points for chapters 6, 10, 11, 12, 13, 14, 15, 16, 17, and 18.
Contributed to design of modelling for Chapter 6 |
| Dr Kate Simms | Postdoctoral Research Fellow, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW | Performed the modelled analysis for Chapter 5, and led the modelled analysis for the effectiveness and cost-effectiveness evaluation for Chapter 6. Assisted in developing systematic review questions. |
| Dr Louiza S Velentzis | Post-doctoral Research Fellow, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW | Performed general evidence reviews and had a lead role in writing several chapters. Specific contributions include:
Led the writing and updated chapters 10, 13-15 and 17
Co-drafted chapters 5 and 16.
Conducted literature reviews for chapter 5 (sections on fertility/early pregnancy outcomes and obstetric complications); chapter 10, chapter 11 (section on follow-up after excisional treatment for AIS), and chapters 13, 14, 15, 17.
Extracted data and drafted general evidence summary tables for chapters 10, 11 (questions 7 and 17), and chapters 13, 14, 15, 17. |
| Dr Susan Yuill | Research Assistant, Cervical Cancer Guidelines, Cancer Research Division, Cancer Council NSW | Acted as the secondary systematic reviewer, specific contributions include the following:
Undertook systematic reviews for chapters 6, 8 – 12, 16 and 18
Undertook general literature reviews for parts of chapters 9, 12 and 18
Reviewed and updated literature summaries for chapters 8, 10 – 11 and 16
Reviewed and updated parts of chapters 9 – 11, 16 and 18 |

MEDICAL WRITER/EDITOR

<table>
<thead>
<tr>
<th>Name</th>
<th>Association</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ms Jennifer Harman</td>
<td>Medical Editor, Meducation, NSW</td>
<td>Provided medical writing and editing services across various chapters</td>
</tr>
</tbody>
</table>
CONFLICT OF INTEREST REGISTER

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Conflict of interest was assessed and managed according to Cancer Council Australia’s *A Code of Practice for Declaring and Dealing with Conflicts of Interest*.\(^1\)

All of the Working Party members, including consumer and GP representatives, observer/non-voting members and Cancer Council project staff were asked to declare in writing any interests relevant to the guidelines development. The Chair and Deputy Chair were responsible for evaluating all statements. The evaluation of possible conflicts of interest was guided by *A Code of Practice for Declaring and Dealing with Conflicts of Interest*.\(^1\) All declarations and the evaluation outcome were added to the register of interests for the guidelines.

This register was available to the Working Party members throughout the development of the guidelines, allowing members to take any potential conflicts of interest into consideration during discussions, decision making and formulation of recommendations. Members were asked to update their information throughout the guidelines development process if they became aware of any changes to their interests.

In the endeavour to circumvent any potential conflicts of interest, the executive representative from Cancer Council Australia was not directly involved in the systematic review process, the development of the guidelines or voting on recommendations. The Department of Health representatives were observer/non-voting members of the Working Party.

When the guidelines enter the updating phase, Working Party members will be responsible to update their conflict of interest statements if a new interest arises. The members would receive a formal reminder to review their statements and ensure it is up-to-date.

References

SAFETY MONITORING OF THE RENEWED CERVICAL SCREENING PROGRAM

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Safety monitoring of the renewed cervical screening program

BACKGROUND
The National Cervical Screening Program (NCSP) Safety Monitoring Committee (SMC) was established in 2005 in response to the National Health and Medical Research Council’s (NHMRC) 2005 Guidelines “Screening to prevent cervical cancer: guidelines for the management of asymptomatic women with screen detected abnormalities.” It was established due to concerns some stakeholders raised regarding the change in management of women with low grade abnormalities and treated high grade abnormalities, from the 1994 guidelines.

The safety monitoring methodology estimated the change in rate of cervical cancer incidence following low grade cytology or a treated high-grade intraepithelial abnormality under the 2005 Guidelines relative to the 1994 Guidelines. A cohort study design was used to select individuals who entered the study at a given time, either following a low-grade Pap test or a histologically confirmed high grade intraepithelial abnormality, and were followed up for five years. The number of women diagnosed with cervical cancer was counted during the follow up time and rate ratios (hazard rates) of cervical cancer were calculated using proportional hazards regression modelling.

Safety monitoring analyses to date have not raised any safety concerns and the outcomes have reassured stakeholders.

The Quality Framework will also include safety monitoring parameters across the cervical screening pathway to ensure the NCSP remains safe at this time of significant change. The methodology for safety monitoring will be developed following the finalisation of these Clinical Management Guidelines. Further information on this process is described in the Quality Framework.

QUALITY AND SAFETY MONITORING COMMITTEE
The Quality and Safety Monitoring Committee (QSMC) was established in 2014 in response to the Medical Services Advisory Committee recommendations to replace the two yearly Pap test with a five yearly HPV test for the NCSP. The QSMC replaced the SMC as it was recognised that this significant change to the screening program would require a broader remit than that of the SMC.

The QSMC has a role in monitoring the quality and safety of the NCSP and reports to the Standing Committee on Screening of the Australian Health Ministers’ Advisory Council. The QSMC is developing a quality and safety monitoring programme as part of a Quality Framework for the NCSP. The Framework will be available from the cancerscreening.gov.au website following its approval by the Standing Committee on Screening.

The QSMC will review the safety monitoring parameters on an annual basis and provide advice to the Standing Committee on Screening should any safety concerns arise. Further information on this process is described in the Quality Framework.

References
GLOSSARY OF TERMS AND ABBREVIATIONS

National Cervical Screening Program: Guidelines for the management of screen-detected abnormalities, screening in specific populations and investigation of abnormal vaginal bleeding
Glossary of terms and abbreviations

<table>
<thead>
<tr>
<th>TERM</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adenomyosis</td>
<td>A condition of the uterus where the endometrium (cells that line the inside of the uterine body) also grow into the myometrium (wall of the uterus).</td>
</tr>
<tr>
<td>Adequate colposcopy</td>
<td>The cervix is clearly seen and not obscured by blood, inflammation or scarring.</td>
</tr>
<tr>
<td>ASC-H</td>
<td>Atypical squamous cells, possible high-grade lesion In the standard US Bethesda System, a category of atypical squamous cells, possible high-grade lesion. Equivalent to possible high-grade squamous intraepithelial lesion (pHSIL) in the Australian Modified Bethesda System.</td>
</tr>
<tr>
<td>ASC-US</td>
<td>Atypical squamous cells, undetermined significance In the current US Bethesda System, a category of atypical squamous cells of undetermined significance: The nature of the abnormality is uncertain or unequivocal. Equivalent to possible low-grade squamous intraepithelial lesion (pLSIL) in the Australian Modified Bethesda System.</td>
</tr>
<tr>
<td>ASCUS</td>
<td>Atypical squamous cells, undetermined significance In the previous versions of the US Bethesda System, a category of atypical squamous cells of undetermined significance: The nature of the abnormality is uncertain or unequivocal. Included lesions equivalent to both possible low-grade squamous intraepithelial lesion (pLSIL) and possible high-grade squamous intraepithelial lesion (pHSIL) in the Australian Modified Bethesda System. Later versions (including the current version) of the Bethesda System split this category into ASC-H and ASC-US.</td>
</tr>
<tr>
<td>Biopsy</td>
<td>Removal of tissue for medical examination.</td>
</tr>
<tr>
<td>BMD</td>
<td>Borderline or mild dyskaryosis considered equivalent to atypical squamous cell, undetermined significance (ASC-US) and low-grade squamous intraepithelial lesion (LSIL) in the Bethesda reporting system and possible LSIL (pLSIL) in the Australian modified Bethesda reporting system.</td>
</tr>
<tr>
<td>CD4 count</td>
<td>The number of CD4 T lymphocytes (CD4 cells) per cubic millimetre of blood, a measure of immune system function.</td>
</tr>
<tr>
<td>CIN</td>
<td>Cervical intraepithelial neoplasia. Refers to abnormal changes in the cells on the surface of the cervix that are seen using a microscope (i.e. histologically-confirmed). CIN1 = mild dysplasia CIN2 = moderate dysplasia CIN 3 = severe dysplasia to carcinoma in situ (The term CIN2+ refers to CIN2,3, or invasive cervical cancer; CIN3+ refers to CIN3 or invasive cervical cancer, CIN2/3 refers to CIN2 or CIN3.</td>
</tr>
<tr>
<td>Cumulative incidence rate</td>
<td>The cumulative incidence rate is a cumulative hazard for a specific disease and should be distinguished from crude (or absolute) risk.</td>
</tr>
<tr>
<td>CKC</td>
<td>Cold-knife conisation (cold-knife cone biopsy) is the removal of cone shaped piece of tissue from the cervix using a scalpel.</td>
</tr>
<tr>
<td>Coagulopathy</td>
<td>Coagulopathy is a condition in which the blood’s ability to coagulate (clot) is impaired.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cohorts offered vaccination</td>
<td>Women who were part of a cohort who were offered vaccination as pre-adolescents (12-13 years), in the context of the National HPV Vaccination Program as implemented in Australia. Specifically, we modelled a cohort of women born in 1997 who were offered vaccination as 12 year olds in 2009. This is the same cohort that was analysed in the Economic Evaluation of the Renewal report.</td>
</tr>
<tr>
<td>Colposcopy</td>
<td>The examination of the cervix and vagina with a magnifying instrument called a colposcope, to check for abnormalities.</td>
</tr>
<tr>
<td>Colposcopists</td>
<td>Health professionals, usually gynaecologists, trained to perform colposcopy.</td>
</tr>
<tr>
<td>Columnar epithelium</td>
<td>Epithelium which has cells of much greater height than width i.e. endocervical epithelium.</td>
</tr>
<tr>
<td>Congenital anomaly</td>
<td>Congenital anomaly is a structural or functional abnormality (anomaly) that occur during intrauterine life and can be identified prenatally, at birth or later in life.</td>
</tr>
<tr>
<td>Congenital TZ</td>
<td>Congenital transformation zone. During early embryonic life, the cuboidal epithelium of the vaginal tube is replaced by the squamous epithelium, which begins at the caudal end of the dorsal urogenital sinus. This process is completed well before birth and the entire length of vagina and the ectocervix is meant to be covered by squamous epithelium. This process proceeds very rapidly along the lateral walls, and later in the anterior and posterior vaginal walls. If the epithelialization proceeds normally, the original squamocolumnar junction will be located at the external os at birth. On the other hand, if this process is arrested for some reason or incomplete, the original squamocolumnar junction will be located distal to the external os or may rarely be located on the vaginal walls, particularly involving the anterior and posterior fornices. The cuboidal epithelium remaining here will undergo squamous metaplasia. This late conversion to squamous epithelium in the anterior and posterior vaginal walls, as well as the ectocervix, results in the formation of the congenital transformation zone. Thus, it is a variant of intrauterine squamous metaplasia, in which differentiation of the squamous epithelium is not fully completed due to an interference with normal maturation. Excessive maturation is seen on the surface (as evidenced by keratinization) with delayed, incomplete maturation in deeper layers. Clinically, it may be seen as an extensive whitish-grey, hyperkeratotic area extending from the anterior and posterior lips of the cervix to the vaginal fornices. Gradual maturation of the epithelium may occur over several years. This type of transformation zone is seen in less than 5% of women and is a variant of the normal transformation zone.</td>
</tr>
<tr>
<td>Condyloma</td>
<td>A ‘knob like’ or warty growth on the genitals caused by an infection with the human papillomavirus.</td>
</tr>
<tr>
<td>Cost-effectiveness</td>
<td>A cost-effectiveness evaluation is a form of economic analysis that compares the relative gain in effectiveness and relative gain in costs of two or more possible scenarios.</td>
</tr>
<tr>
<td>CO2 Laser</td>
<td>Carbon dioxide laser. A gas laser (based on a gas medium containing carbon dioxide, helium, nitrogen, some hydrogen, water vapour and/or xenon) that is used in cervical ablation, cervical conisation and ablation of genital condyloma (warts).</td>
</tr>
<tr>
<td>Co-test</td>
<td>HPV test and LBC both requested and performed on a cervical sample.</td>
</tr>
<tr>
<td>Co-testing</td>
<td>HPV test and LBC both requested and performed on a cervical sample.</td>
</tr>
<tr>
<td>Cryotherapy</td>
<td>The use of extreme cold in surgery. Used in treatment of cervix with specially designed cryoprobe, but its use is limited to low resource countries.</td>
</tr>
<tr>
<td>Cyanosis</td>
<td>A bluish discoloration of the skin due to poor circulation or inadequate oxygenation of the blood.</td>
</tr>
<tr>
<td>Cytobroom</td>
<td>A plastic broom-shaped device used to sample cells from the cervix.</td>
</tr>
<tr>
<td>Deciduosis</td>
<td>A visual change on the cervix that is seen commonly in pregnancy, characterised by multiple small, yellow/red elevations of cervical mucosa.</td>
</tr>
<tr>
<td>Diathermy point</td>
<td>Straight wire excision of the transformation zone (SWETZ) or needle excision of the transformation zone (NETZ).</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Discounted costs</td>
<td>Discounted costs represent the total predicted cost associated with cervical cancer screening for the lifetime of a woman, which is discounted by 5% per year after the age of 12 years (the age at which the earlier intervention, vaccination, occurs).</td>
</tr>
<tr>
<td>Discounted life–years</td>
<td>Discounted life–years represent the predicted probability of remaining alive each year after birth, which is discounted by 5% per year after the age of 12 years (the age at which the earlier intervention, vaccination, occurs).</td>
</tr>
<tr>
<td>Dysplasia</td>
<td>Dysplasia is an abnormality of epithelial growth and differentiation. Categorised as mild, moderate and severe and correlates with CIN1, CIN2 and CIN3.</td>
</tr>
<tr>
<td>Dynamic model</td>
<td>A dynamic model captures time-dependent changes in the state of the system, which is in contrast to a static model, which is time-independent. For instance, the change in the number of infected women over time due to vaccination may influence the rate of new infections due to herd immunity, and cannot be captured through a static model.</td>
</tr>
<tr>
<td>Ectopy</td>
<td>Cervical ectopy or ectropion is a condition in which the endocervical columnar epithelium protrudes through the external cervical os and onto the vaginal portion of the cervix.</td>
</tr>
<tr>
<td>ECC</td>
<td>Endocervical curettage: The removal of tissue from the endocervical canal of the cervix.</td>
</tr>
<tr>
<td>Endometriosis</td>
<td>A condition when the endometrium is found in abnormal sites around the body, most commonly in extraterine sites in the pelvis.</td>
</tr>
<tr>
<td>Exophytic lesion</td>
<td>A lesion that grows outwards from an epithelial surface.</td>
</tr>
<tr>
<td>Experienced colposcopist</td>
<td>An experienced colposcopist is usually considered to be one who is, or has been, associated with a tertiary referral centre and has experience in the management of patients with complex problems.</td>
</tr>
<tr>
<td>Fischer cone</td>
<td>The Fischer cone is a conisation specimen obtained by using a Fischer cone biopsy excisor, and uses similar electrosurgical technology as used in loop excision procedures.</td>
</tr>
<tr>
<td>Gynaecological oncologist</td>
<td>A gynaecological oncologist is a gynaecologist who has received special training in the management of genital tract cancer in women and has been certified by the RANZCOG: Certified Gynaecological Oncologist (GO).</td>
</tr>
<tr>
<td>HPV 16/18</td>
<td>Oncogenic HPV types 16 and/or 18 detected using routine HPV screening tests in the laboratory.</td>
</tr>
<tr>
<td>HPV not 16/18</td>
<td>Oncogenic HPV types other than 16 and/or 18 detected using routine HPV screening tests in the laboratory.</td>
</tr>
<tr>
<td>HPV any type</td>
<td>Oncogenic HPV types detected using routine HPV screening tests in the laboratory.</td>
</tr>
<tr>
<td>HPV positive</td>
<td>Women with a positive HPV test result of any oncogenic HPV types detected using HPV testing platforms in a pathology laboratory.</td>
</tr>
<tr>
<td>HPV detected</td>
<td>Women with a positive HPV test result of any oncogenic HPV types detected using HPV testing platforms in a pathology laboratory.</td>
</tr>
<tr>
<td>HPV negative</td>
<td>Women in whom oncogenic HPV types are not detected by the HPV testing platform.</td>
</tr>
<tr>
<td>HPV not detected</td>
<td>Oncogenic HPV types not detected by the HPV testing platform.</td>
</tr>
<tr>
<td>Hr-HPV type</td>
<td>HPV types associated with high risk of cervical high grade precancerous lesions and cancer.</td>
</tr>
<tr>
<td>HSIL</td>
<td>High-grade squamous intraepithelial lesion. In the Australian context, HSIL is used to refer to a cytology predictive of a high grade precancerous lesion (AMBS 2004), or histologically confirmed high grade precancerous lesion (HSIL-CIN2 or HSIL-CIN3 as per LAST terminology).</td>
</tr>
<tr>
<td>Hysterectomy (total)</td>
<td>Complete surgical removal of the uterus including the cervix.</td>
</tr>
<tr>
<td>LBC</td>
<td>Liquid based cytology (LBC) is a way of preparing cervical samples for examination in the laboratory.</td>
</tr>
<tr>
<td>Intermenstrual bleeding</td>
<td>Vaginal bleeding at any time other than during normal menstruation or following sexual intercourse.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>Leiomyoma</td>
<td>Leiomyoma is a benign tumour arising from the smooth muscle of the uterus, commonly known as a fibroid.</td>
</tr>
<tr>
<td>Loop diathermy</td>
<td>Loop electrosurgical excision procedure (LEEP) or large loop excision of the transformation zone (LLETZ).</td>
</tr>
<tr>
<td>LSIL</td>
<td>Low-grade squamous intraepithelial lesion. In the Australian context, LSIL is used to refer to a cytology predictive of a low grade precancerous lesion (AMBS 2004), or histologically confirmed low grade precancerous lesion (LSIL – HPV, LSIL -condyoma and LSIL – CIN1 as per LAST terminology).</td>
</tr>
<tr>
<td>Lympho-vascular space invasion</td>
<td>The spread of malignant cells from a cancer, to the blood vessels or lymphatics. In the cervix it is described most commonly in early invasive disease and is important in determining the need for further treatment in superficially invasive squamous cell carcinoma.</td>
</tr>
<tr>
<td>Metaplastic squamous epithelium</td>
<td>Metaplasia is a non-neoplastic transformation of one mature cell type to another type that is not normally present at that location. In the cervix this refers to the transformation of endocervical columnar epithelium to squamous epithelium, described as metaplastic squamous epithelium.</td>
</tr>
<tr>
<td>Multi-HPV-type model</td>
<td>A model which takes into account different rates of progression and regression of infection/CIN caused by different HPV types (for instance, CIN caused by HPV 16 is less likely to regress, and more likely to progress, than CIN caused by other HPV types).</td>
</tr>
<tr>
<td>Multiple-cohort model</td>
<td>A multiple-cohort model can simulate outcomes for cohorts born at different ages.</td>
</tr>
<tr>
<td>Nabothian cysts</td>
<td>A mucus filled cyst on the surface of the cervix (this is a normal finding).</td>
</tr>
<tr>
<td>NCSP</td>
<td>National Cervical Screening Program. A joint program of the Australian, state and territory governments. It aims to reduce morbidity and mortality from cervical cancer, in a cost-effective manner through an organised approach to cervical screening. The program encourages women in the target population to have regular cervical screening.</td>
</tr>
<tr>
<td>Needle excision</td>
<td>Straight wire excision of the transformation zone (SWETZ) or needle excision of the transformation zone (NETZ).</td>
</tr>
<tr>
<td>Necrosis</td>
<td>The death of living cells and tissues.</td>
</tr>
<tr>
<td>Negative colposcopy</td>
<td>A colposcopy in which no abnormalities are seen: it does not include the subsequent reports on any biopsy taken. Also called a ‘normal’ colposcopy and implies that the entire transformation zone of the cervix is visible.</td>
</tr>
<tr>
<td>Negative co-test</td>
<td>Oncogenic HPV types not detected and LBC is negative.</td>
</tr>
<tr>
<td>Normal cervical screening history</td>
<td>Women who have participated in the NCSP with no detected abnormalities.</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value: the probability that a negative test result is a true negative.</td>
</tr>
<tr>
<td>Oedema</td>
<td>A condition characterised by an excess of watery fluid collecting in the tissues or cavities of the body.</td>
</tr>
<tr>
<td>Oncogenic HPV</td>
<td>Potentially cancer-causing HPV DNA types, pathogenically linked to intraepithelial neoplasia – e.g. of the uterine cervix (termed CIN).</td>
</tr>
<tr>
<td>Oncogenic HPV types</td>
<td>Oncogenic HPV are HPV types considered capable of causing cancer. Types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59 and 68 are included in tests suitable for cervical screening. Some tests also detect type 66.</td>
</tr>
<tr>
<td>Partial HPV genotyping</td>
<td>Testing for subgroups of high risk HPV types e.g. types 16 or 18.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>PCB</td>
<td>Postcoital bleeding. Vaginal bleeding after intercourse.</td>
</tr>
<tr>
<td>pHsIL</td>
<td>Possible HSIL in the Australian Modified Bethesda System is broadly equivalent to ASC-H in US Bethesda system.</td>
</tr>
<tr>
<td>pLSIL</td>
<td>Possible LSIL in the Australian Modified Bethesda System is broadly equivalent to ASC-US in US Bethesda system.</td>
</tr>
<tr>
<td>Polyp (ectocervical/endocervical) inflammation</td>
<td>A small protrusion of tissue that looks like a ball on the end of a slim stalk, and can be visible on the cervix, usually arising from the endocervical or endometrial tissue of uterus. Polyps are usually not neoplastic but can unusually be neoplastic or cancerous.</td>
</tr>
<tr>
<td>Positive oncogenic HPV (16/18)</td>
<td>Women with a positive HPV test result of HPV types 16 and/or 18 detected using routine HPV testing in a pathology laboratory.</td>
</tr>
<tr>
<td>Positive oncogenic HPV (not 16/18)</td>
<td>Women with a positive HPV test result of other oncogenic HPV types other than types 16 and 18 detected using routine HPV testing in a pathology laboratory.</td>
</tr>
<tr>
<td>Positive oncogenic HPV (any type)</td>
<td>Women with a positive HPV test result of any oncogenic HPV types detected using routine HPV testing in a pathology laboratory.</td>
</tr>
<tr>
<td>Profiled electrosurgical excision</td>
<td>This type of excision uses a specific type of ‘loop’ that can be inserted into the cervical canal and allows for a rotational excision of a ‘cone’ shaped piece of tissue.</td>
</tr>
<tr>
<td>Reflex cytology</td>
<td>Reflex cytology refers to the automatic performance of a cytological examination of a liquid based cervical sample that has tested positive for oncogenic HPV types, determined by the pathologist.</td>
</tr>
<tr>
<td>Reflex LBC</td>
<td>Reflex liquid-based cytology LBC (cytology). A test performed on a liquid-based cytology sample when there is a positive oncogenic HPV test result, determined by the pathologist. Reflex LBC may allow for the triage of women along different pathways, negative, LSIL and HSIL, glandular. For women who have HPV16 and/or 18, and who are being referred directly to colposcopy, the reflex LBC result would inform the colposcopic assessment.</td>
</tr>
<tr>
<td>Registry</td>
<td>A database of identifiable persons containing defined demographic and health information, established for a specific purpose. In the case of cervical screening or other cancer screening registers, the purpose includes inviting eligible persons for screening, sending reminders when they are overdue for screening, follow up of abnormalities, statistical reporting and research.</td>
</tr>
<tr>
<td>Register</td>
<td>A database of identifiable persons containing defined demographic and health information, established for a specific purpose. In the case of cervical screening or other cancer screening registers, the purpose includes inviting eligible persons for screening, sending reminders when they are overdue for screening, follow up of abnormalities, statistical reporting and research.</td>
</tr>
<tr>
<td>Sexual activity</td>
<td>Sexual intercourse, oral sexual contact, anal sexual contact or genital skin-to-skin contact.</td>
</tr>
<tr>
<td>SIL</td>
<td>Squamous intraepithelial lesion. An abnormal growth of epithelial cells on the surface of the cervix, commonly called squamous cells.</td>
</tr>
<tr>
<td>SISCCA</td>
<td>Superficially invasive squamous cell carcinoma (previously termed micro-invasive carcinoma).</td>
</tr>
<tr>
<td>Squamous epithelium</td>
<td>In the cervix and the vagina this is a stratified squamous epithelium that consists of squamous cells arranged in layers on a basement membrane.</td>
</tr>
<tr>
<td>Squamocolumnar junction</td>
<td>The junction where the ectocervical squamous epithelium and the endocervical columnar epithelium meet, and may be located on the visible ectocervix or may be within the endocervical canal.</td>
</tr>
<tr>
<td>Squamous metaplasia</td>
<td>In the cervix this refers to the transformation of endocervical columnar epithelium to squamous epithelium, described as metaplastic squamous epithelium.</td>
</tr>
<tr>
<td>Stenosis</td>
<td>A narrowing of a cylindrical canal.</td>
</tr>
<tr>
<td>Subclinical</td>
<td>Not clinically apparent.</td>
</tr>
<tr>
<td>Thermal coagulation</td>
<td>Also known as ‘Semm’ or ‘Cold’ coagulation.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>Triage cytology</td>
<td>The results of liquid based cytology are used to determine the optimum management.</td>
</tr>
<tr>
<td>TZ</td>
<td>Transformation zone. This region of the cervix where the columnar epithelium has been replaced and/or is being replaced by the new metaplastic squamous epithelium is referred to as the transformation zone. It corresponds to the area of cervix bound by the original squamocolumnar junction at the distal end and proximally by the furthest extent that squamous metaplasia has occurred as defined by the new squamocolumnar junction. In premenopausal women, the transformation zone is fully located on the ectocervix. After menopause through old age, the cervix shrinks with the decreasing levels of estrogen. Consequently, the transformation zone may move partially, and later fully, into the cervical canal. The transformation zone may be described as normal when it is composed of immature and/or mature squamous metaplasia along with intervening areas or islands of columnar epithelium, with no signs of cervical carcinogenesis. It is termed an abnormal or atypical transformation zone (ATZ) when evidence of cervical carcinogenesis such as dysplastic change is observed in the transformation zone. Identifying the transformation zone is of great importance in colposcopy, as almost all manifestations of cervical carcinogenesis occur in this zone. Type 1 TZ: the whole TZ including all the upper limit is ectocervical. Type 2 TZ: the upper limit of the TZ is partly or wholly visible in the canal and is completely visible around 360 degrees. Type 3 TZ: part or the entire upper limit of the TZ cannot be seen in the canal. Type 1 excision (for Type 1 TZ): usually to 8mm and not more than 10mm length of cervical tissue excised. Type 2 excision (for Type 2 TZ): not more than 15mm length of tissue excised. Type 3 excision (for Type 3 TZ): equivalent to 'cone biopsy' and >15mm length.</td>
</tr>
<tr>
<td>Type 1 TZ</td>
<td>The whole TZ including all the upper limit is ectocervical.</td>
</tr>
<tr>
<td>Type 1 excision</td>
<td>Type 1 excision (for Type 1 TZ): usually to 8mm and not more than 10mm length of cervical tissue excised.</td>
</tr>
<tr>
<td>Type 2 TZ</td>
<td>The upper limit of the TZ is partly or wholly visible in the canal and is completely visible around 360 degrees.</td>
</tr>
<tr>
<td>Type 2 excision</td>
<td>Type 2 excision (for Type 2 TZ): Not more than 15mm length of tissue excised.</td>
</tr>
<tr>
<td>Type 3 excision</td>
<td>Type 3 excision (for Type 3 TZ): Equivalent to 'cone biopsy' and >15mm length.</td>
</tr>
<tr>
<td>Ulceration</td>
<td>The loss of a small or large portion of a surface epithelium, leading to a ‘raw’ area. Can be caused by local trauma, inflammation and cancer.</td>
</tr>
<tr>
<td>Under-screened</td>
<td>Women who are over 30 years of age and are 2 or more years overdue for their routine 5-yearly cervical screening test.</td>
</tr>
<tr>
<td>Unvaccinated cohorts</td>
<td>Women who were not offered HPV vaccination, and who experience no herd immunity effects from the National HPV Vaccination Program.</td>
</tr>
<tr>
<td>Vaginal stenosis</td>
<td>Narrowing of the vagina.</td>
</tr>
<tr>
<td>(\leq)</td>
<td>Less than or equal to.</td>
</tr>
<tr>
<td>(\geq)</td>
<td>Greater than or equal to.</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>AGC</td>
<td>Atypical glandular cells</td>
</tr>
<tr>
<td>AGUS</td>
<td>Atypical glandular cells of undetermined significance</td>
</tr>
<tr>
<td>AIHW</td>
<td>Australian Institute of Health and Welfare</td>
</tr>
<tr>
<td>AIN</td>
<td>Anal intra-epithelial neoplasia</td>
</tr>
<tr>
<td>AIS</td>
<td>Adenocarcinoma in situ</td>
</tr>
<tr>
<td>AMBS</td>
<td>Australian Modified Bethesda System</td>
</tr>
<tr>
<td>ASCCP</td>
<td>Australian Society for Colposcopy and Cervical Pathology</td>
</tr>
<tr>
<td>ASC-H</td>
<td>Atypical squamous cells, possible high-grade lesion</td>
</tr>
<tr>
<td>ASCUS</td>
<td>Atypical squamous cells, undetermined significance</td>
</tr>
<tr>
<td>ASR</td>
<td>Age-standardised to the Australian population</td>
</tr>
<tr>
<td>ASRW</td>
<td>Age-standardised to the world standard population</td>
</tr>
<tr>
<td>BNA</td>
<td>Borderline nuclear abnormalities (British Society for Clinical Cytology)</td>
</tr>
<tr>
<td>BMD</td>
<td>Borderline or mild dyskaryosis</td>
</tr>
<tr>
<td>CCC</td>
<td>Clear cell carcinoma</td>
</tr>
<tr>
<td>CGIN</td>
<td>Cervical glandular intraepithelial neoplasia</td>
</tr>
<tr>
<td>CIN</td>
<td>Cervical intraepithelial neoplasia</td>
</tr>
<tr>
<td>CIN1</td>
<td>Cervical intraepithelial neoplasia 1</td>
</tr>
<tr>
<td>CIN2</td>
<td>Cervical intraepithelial neoplasia 2</td>
</tr>
<tr>
<td>CIN3</td>
<td>Cervical intraepithelial neoplasia 3</td>
</tr>
<tr>
<td>CIN2/3</td>
<td>Cervical intraepithelial neoplasia 2 or 3</td>
</tr>
<tr>
<td>CIR</td>
<td>Cumulative incidence rates</td>
</tr>
<tr>
<td>CKC</td>
<td>Cold-knife conisation</td>
</tr>
<tr>
<td>DCV</td>
<td>Direct colposcopic vision</td>
</tr>
<tr>
<td>DES</td>
<td>Diethylstilboestrol</td>
</tr>
<tr>
<td>ECC</td>
<td>Endocervical curettage</td>
</tr>
<tr>
<td>FIGO</td>
<td>The International Federation of Gynaecology and Obstetrics</td>
</tr>
<tr>
<td>FU</td>
<td>Follow-up</td>
</tr>
<tr>
<td>HGGA</td>
<td>High-grade glandular atypia</td>
</tr>
<tr>
<td>HGGL</td>
<td>High-grade glandular lesion</td>
</tr>
<tr>
<td>HPV</td>
<td>Human papillomavirus</td>
</tr>
<tr>
<td>HPV 16/18</td>
<td>HPV types 16 and/or 18</td>
</tr>
<tr>
<td>HPV +ve (any type)</td>
<td>HPV positive (any oncogenic type)</td>
</tr>
<tr>
<td>HPV –ve</td>
<td>HPV negative</td>
</tr>
<tr>
<td>TERM</td>
<td>DEFINITION</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>Hr-HPV</td>
<td>High-risk human papillomavirus</td>
</tr>
<tr>
<td>HSIL</td>
<td>High-grade squamous intraepithelial lesion</td>
</tr>
<tr>
<td>IARC</td>
<td>International Agency for Research on Cancer</td>
</tr>
<tr>
<td>IFCPC</td>
<td>The International Federation of Cervical Pathology and Colposcopy</td>
</tr>
<tr>
<td>IMB</td>
<td>Intermenstrual bleeding</td>
</tr>
<tr>
<td>LAST</td>
<td>Lower anogenital squamous terminology</td>
</tr>
<tr>
<td>LBC</td>
<td>Liquid-based cytology</td>
</tr>
<tr>
<td>LEEP</td>
<td>Loop electrosurgical excision procedure</td>
</tr>
<tr>
<td>LC</td>
<td>Carbon dioxide laser cone biopsy</td>
</tr>
<tr>
<td>LLETZ</td>
<td>Large loop excision of the transformation zone</td>
</tr>
<tr>
<td>LSIL</td>
<td>Low-grade squamous intraepithelial lesion</td>
</tr>
<tr>
<td>MSAC</td>
<td>The Australian Medical Services Advisory Committee</td>
</tr>
<tr>
<td>MST</td>
<td>Multi-disciplinary team</td>
</tr>
<tr>
<td>NCI</td>
<td>National Cancer Institute</td>
</tr>
<tr>
<td>NCSP</td>
<td>National Cervical Screening Program</td>
</tr>
<tr>
<td>NCSR</td>
<td>National Cancer Screening Register</td>
</tr>
<tr>
<td>NETZ</td>
<td>Needle excision of the transformation zone</td>
</tr>
<tr>
<td>NHMRC</td>
<td>National Health and Medical Research Council</td>
</tr>
<tr>
<td>Not HPV 16/18</td>
<td>All oncogenic HPV types other than 16 and 18</td>
</tr>
<tr>
<td>NPV</td>
<td>Negative predictive value</td>
</tr>
<tr>
<td>PBAC</td>
<td>Pharmaceuticals Benefits Advisory Committee</td>
</tr>
<tr>
<td>PCB</td>
<td>Post-coital bleeding</td>
</tr>
<tr>
<td>PCR</td>
<td>Polymerase chain reaction</td>
</tr>
<tr>
<td>PPV</td>
<td>Positive predictive value</td>
</tr>
<tr>
<td>PTL</td>
<td>Preterm labour</td>
</tr>
<tr>
<td>RACGP</td>
<td>The Royal Australian College of General Practitioners</td>
</tr>
<tr>
<td>RANZCOG</td>
<td>The Royal Australian and New Zealand College of Obstetricians and Gynaecologists</td>
</tr>
<tr>
<td>RCPA</td>
<td>The Royal College of Pathologists of Australasia</td>
</tr>
<tr>
<td>SCC</td>
<td>Squamous cell carcinoma</td>
</tr>
<tr>
<td>SIL</td>
<td>Squamous intraepithelial lesion</td>
</tr>
<tr>
<td>SIR</td>
<td>Standardised incidence rate</td>
</tr>
<tr>
<td>SISCCA</td>
<td>Superficially invasive squamous cell carcinoma (previously termed micro-invasive carcinoma)</td>
</tr>
<tr>
<td>SWETZ</td>
<td>Straight wire excision of the transformation zone</td>
</tr>
</tbody>
</table>